Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Joel Bert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (6): 1337–1353.
Published: 01 June 2000
Abstract
View article
PDF
A method for visualizing the function computed by a feedforward neural network is presented. It is most suitable for models with continuous inputs and a small number of outputs, where the output function is reasonably smooth, as in regression and probabilistic classification tasks. The visualization makes readily apparent the effects of each input and the way in which the functions deviate from a linear function. The visualization can also assist in identifying interactions in the fitted model. The method uses only the input-output relationship and thus can be applied to any predictive statistical model, including bagged and committee models, which are otherwise difficult to interpret. The visualization method is demonstrated on a neural network model of how the risk of lung cancer is affected by smoking and drinking.