Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
John P. Donoghue
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (1): 1–31.
Published: 01 January 2015
FIGURES
| View All (21)
Abstract
View article
PDF
Increased emphasis on circuit level activity in the brain makes it necessary to have methods to visualize and evaluate large-scale ensemble activity beyond that revealed by raster-histograms or pairwise correlations. We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how spike train SIMilarity space (SSIMS) analysis captures the relationship between goal directions for an eight-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (3): 672–705.
Published: 01 March 2007
Abstract
View article
PDF
Statistical nonparametric modeling tools that enable the discovery and approximation of functional forms (e.g., tuning functions) relating neural spiking activity to relevant covariates are desirable tools in neuroscience. In this article, we show how stochastic gradient boosting regression can be successfully extended to the modeling of spiking activity data while preserving their point process nature, thus providing a robust nonparametric modeling tool. We formulate stochastic gradient boosting in terms of approximating the conditional intensity function of a point process in discrete time and use the standard likelihood of the process to derive the loss function for the approximation problem. To illustrate the approach, we apply the algorithm to the modeling of primary motor and parietal spiking activity as a function of spiking history and kinematics during a two-dimensional reaching task. Model selection, goodness of fit via the time rescaling theorem, model interpretation via partial dependence plots, ranking of covariates according to their relative importance, and prediction of peri-event time histograms are illustrated and discussed. Additionally, we use the tenfold cross-validated log likelihood of the modeled neural processes (67 cells) to compare the performance of gradient boosting regression to two alternative approaches: standard generalized linear models (GLMs) and Bayesian P-splines with Markov chain Monte Carlo (MCMC) sampling. In our data set, gradient boosting outperformed both Bayesian P-splines (in approximately 90% of the cells) and GLMs (100%). Because of its good performance and computational efficiency, we propose stochastic gradient boosting regression as an off-the-shelf nonparametric tool for initial analyses of large neural data sets (e.g., more than 50 cells; more than 10 5 samples per cell) with corresponding multidimensional covariate spaces (e.g., more than four covariates). In the cases where a functional form might be amenable to a more compact representation, gradient boosting might also lead to the discovery of simpler, parametric models.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (1): 80–118.
Published: 01 January 2006
Abstract
View article
PDF
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior . The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian.In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results.The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.