Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
John Shawe-Taylor
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (12): 2639–2664.
Published: 01 December 2004
Abstract
View article
PDF
We present a general method using kernel canonical correlation analysis to learn a semantic representation to web images and their associated text. The semantic space provides a common representation and enables a comparison between the text and images. In the experiments, we look at two approaches of retrieving images based on only their content from a text query. We compare orthogonalization approaches against a standard cross-representation retrieval technique known as the generalized vector space model.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (7): 1443–1471.
Published: 01 July 2001
Abstract
View article
PDF
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.