Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
John Sum
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (4): 965–976.
Published: 15 May 1999
Abstract
View article
PDF
Pruning a neural network to a reasonable smaller size, and if possible to give a better generalization, has long been investigated. Conventionally the common technique of pruning is based on considering error sensitivity measure, and the nature of the problem being solved is usually stationary. In this article, we present an adaptive pruning algorithm for use in a nonstationary environment. The idea relies on the use of the extended Kalman filter (EKF) training method. Since EKF is a recursive Bayesian algorithm, we define a weight-importance measure in term of the sensitivity of a posteriori probability. Making use of this new measure and the adaptive nature of EKF, we devise an adaptive pruning algorithm called adaptive Bayesian pruning . Simulation results indicate that in a noisy nonstationary environment, the proposed pruning algorithm is able to remove network redundancy adaptively and yet preserve the same generalization ability.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (6): 1481–1505.
Published: 15 August 1998
Abstract
View article
PDF
Pruning is one of the effective techniques for improving the generalization error of neural networks. Existing pruning techniques are derived mainly from the viewpoint of energy minimization, which is commonly used in gradient-based learning methods. In recurrent networks, extended Kalman filter (EKF)–based training has been shown to be superior to gradient-based learning methods in terms of speed. This article explains a pruning procedure for recurrent neural networks using EKF training. The sensitivity of a posterior probability is used as a measure of the importance of a weight instead of error sensitivity since posterior probability density is readily obtained from this training method. The pruning procedure is tested using three problems: (1) the prediction of a simple linear time series, (2) the identification of a nonlinear system, and (3) the prediction of an exchange-rate time series. Simulation results demonstrate that the proposed pruning method is able to reduce the number of parameters and improve the generalization ability of a recurrent network.