Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
John Wawrzynek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (1): 267–296.
Published: 01 January 1999
Abstract
View article
PDF
A JPEG Quality Transcoder (JQT) converts a JPEG image file that was encoded with low image quality to a larger JPEG image file with reduced visual artifacts, without access to the original uncompressed image. In this article, we describe technology for JQT design that takes a pattern recognition approach to the problem, using a database of images to train statistical models of the artifacts introduced through JPEG compression. In the training procedure for these models, we use a model of human visual perception as an error measure. Our current prototype system removes 32.2% of the artifacts introduced by moderate compression, as measured on an independent test database of linearly coded images using a perceptual error metric. This improvement results in an average PSNR reduction of 0.634 dB.