Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-10 of 10
Jonathan W. Pillow
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2024) 36 (12): 2571–2601.
Published: 19 November 2024
FIGURES
| View All (6)
Abstract
View article
PDF
The sparse coding model posits that the visual system has evolved to efficiently code natural stimuli using a sparse set of features from an overcomplete dictionary. The original sparse coding model suffered from two key limitations; however: (1) computing the neural response to an image patch required minimizing a nonlinear objective function via recurrent dynamics and (2) fitting relied on approximate inference methods that ignored uncertainty. Although subsequent work has developed several methods to overcome these obstacles, we propose a novel solution inspired by the variational autoencoder (VAE) framework. We introduce the sparse coding variational autoencoder (SVAE), which augments the sparse coding model with a probabilistic recognition model parameterized by a deep neural network. This recognition model provides a neurally plausible feedforward implementation for the mapping from image patches to neural activities and enables a principled method for fitting the sparse coding model to data via maximization of the evidence lower bound (ELBO). The SVAE differs from standard VAEs in three key respects: the latent representation is overcomplete (there are more latent dimensions than image pixels), the prior is sparse or heavy-tailed instead of gaussian, and the decoder network is a linear projection instead of a deep network. We fit the SVAE to natural image data under different assumed prior distributions and show that it obtains higher test performance than previous fitting methods. Finally, we examine the response properties of the recognition network and show that it captures important nonlinear properties of neurons in the early visual pathway.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2024) 36 (3): 437–474.
Published: 16 February 2024
FIGURES
| View All (9)
Abstract
View article
PDF
Active learning seeks to reduce the amount of data required to fit the parameters of a model, thus forming an important class of techniques in modern machine learning. However, past work on active learning has largely overlooked latent variable models, which play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines. Here we address this gap by proposing a novel framework for maximum-mutual-information input selection for discrete latent variable regression models. We first apply our method to a class of models known as mixtures of linear regressions (MLR). While it is well known that active learning confers no advantage for linear-gaussian regression models, we use Fisher information to show analytically that active learning can nevertheless achieve large gains for mixtures of such models, and we validate this improvement using both simulations and real-world data. We then consider a powerful class of temporally structured latent variable models given by a hidden Markov model (HMM) with generalized linear model (GLM) observations, which has recently been used to identify discrete states from animal decision-making data. We show that our method substantially reduces the amount of data needed to fit GLM-HMMs and outperforms a variety of approximate methods based on variational and amortized inference. Infomax learning for latent variable models thus offers a powerful approach for characterizing temporally structured latent states, with a wide variety of applications in neuroscience and beyond.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2024) 36 (2): 175–226.
Published: 18 January 2024
FIGURES
| View All (7)
Abstract
View article
PDF
Neural decoding methods provide a powerful tool for quantifying the information content of neural population codes and the limits imposed by correlations in neural activity. However, standard decoding methods are prone to overfitting and scale poorly to high-dimensional settings. Here, we introduce a novel decoding method to overcome these limitations. Our approach, the gaussian process multiclass decoder (GPMD), is well suited to decoding a continuous low-dimensional variable from high-dimensional population activity and provides a platform for assessing the importance of correlations in neural population codes. The GPMD is a multinomial logistic regression model with a gaussian process prior over the decoding weights. The prior includes hyperparameters that govern the smoothness of each neuron’s decoding weights, allowing automatic pruning of uninformative neurons during inference. We provide a variational inference method for fitting the GPMD to data, which scales to hundreds or thousands of neurons and performs well even in data sets with more neurons than trials. We apply the GPMD to recordings from primary visual cortex in three species: monkey, ferret, and mouse. Our decoder achieves state-of-the-art accuracy on all three data sets and substantially outperforms independent Bayesian decoding, showing that knowledge of the correlation structure is essential for optimal decoding in all three species.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (6): 995–1027.
Published: 12 May 2023
Abstract
View article
PDF
An important problem in systems neuroscience is to characterize how a neuron integrates sensory inputs across space and time. The linear receptive field provides a mathematical characterization of this weighting function and is commonly used to quantify neural response properties and classify cell types. However, estimating receptive fields is difficult in settings with limited data and correlated or high-dimensional stimuli. To overcome these difficulties, we propose a hierarchical model designed to flexibly parameterize low-rank receptive fields. The model includes gaussian process priors over spatial and temporal components of the receptive field, encouraging smoothness in space and time. We also propose a new temporal prior, temporal relevance determination, which imposes a variable degree of smoothness as a function of time lag. We derive a scalable algorithm for variational Bayesian inference for both spatial and temporal receptive field components and hyperparameters. The resulting estimator scales to high-dimensional settings in which full-rank maximum likelihood or a posteriori estimates are intractable. We evaluate our approach on neural data from rat retina and primate cortex and show that it substantially outperforms a variety of existing estimators. Our modeling approach will have useful extensions to a variety of other high-dimensional inference problems with smooth or low-rank structure.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (9): 1871–1892.
Published: 16 August 2022
Abstract
View article
PDF
A large body of work has suggested that neural populations exhibit low-dimensional dynamics during behavior. However, there are a variety of different approaches for modeling low-dimensional neural population activity. One approach involves latent linear dynamical system (LDS) models, in which population activity is described by a projection of low-dimensional latent variables with linear dynamics. A second approach involves low-rank recurrent neural networks (RNNs), in which population activity arises directly from a low-dimensional projection of past activity. Although these two modeling approaches have strong similarities, they arise in different contexts and tend to have different domains of application. Here we examine the precise relationship between latent LDS models and linear low-rank RNNs. When can one model class be converted to the other, and vice versa? We show that latent LDS models can only be converted to RNNs in specific limit cases, due to the non-Markovian property of latent LDS models. Conversely, we show that linear RNNs can be mapped onto LDS models, with latent dimensionality at most twice the rank of the RNN. A surprising consequence of our results is that a partially observed RNN is better represented by an LDS model than by an RNN consisting of only observed units.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (4): 1012–1045.
Published: 01 April 2018
FIGURES
| View All (11)
Abstract
View article
PDF
Neurons in many brain areas exhibit high trial-to-trial variability, with spike counts that are overdispersed relative to a Poisson distribution. Recent work (Goris, Movshon, & Simoncelli, 2014 ) has proposed to explain this variability in terms of a multiplicative interaction between a stochastic gain variable and a stimulus-dependent Poisson firing rate, which produces quadratic relationships between spike count mean and variance. Here we examine this quadratic assumption and propose a more flexible family of models that can account for a more diverse set of mean-variance relationships. Our model contains additive gaussian noise that is transformed nonlinearly to produce a Poisson spike rate. Different choices of the nonlinear function can give rise to qualitatively different mean-variance relationships, ranging from sublinear to linear to quadratic. Intriguingly, a rectified squaring nonlinearity produces a linear mean-variance function, corresponding to responses with a constant Fano factor. We describe a computationally efficient method for fitting this model to data and demonstrate that a majority of neurons in a V1 population are better described by a model with a nonquadratic relationship between mean and variance. Finally, we demonstrate a practical use of our model via an application to Bayesian adaptive stimulus selection in closed-loop neurophysiology experiments, which shows that accounting for overdispersion can lead to dramatic improvements in adaptive tuning curve estimation.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (12): 3260–3289.
Published: 01 December 2017
FIGURES
| View All (11)
Abstract
View article
PDF
A key problem in computational neuroscience is to find simple, tractable models that are nevertheless flexible enough to capture the response properties of real neurons. Here we examine the capabilities of recurrent point process models known as Poisson generalized linear models (GLMs). These models are defined by a set of linear filters and a point nonlinearity and are conditionally Poisson spiking. They have desirable statistical properties for fitting and have been widely used to analyze spike trains from electrophysiological recordings. However, the dynamical repertoire of GLMs has not been systematically compared to that of real neurons. Here we show that GLMs can reproduce a comprehensive suite of canonical neural response behaviors, including tonic and phasic spiking, bursting, spike rate adaptation, type I and type II excitation, and two forms of bistability. GLMs can also capture stimulus-dependent changes in spike timing precision and reliability that mimic those observed in real neurons, and can exhibit varying degrees of stochasticity, from virtually deterministic responses to greater-than-Poisson variability. These results show that Poisson GLMs can exhibit a wide range of dynamic spiking behaviors found in real neurons, making them well suited for qualitative dynamical as well as quantitative statistical studies of single-neuron and population response properties.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (1): 1–45.
Published: 01 January 2011
FIGURES
| View All (32)
Abstract
View article
PDF
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (1): 46–96.
Published: 01 January 2011
FIGURES
| View All (29)
Abstract
View article
PDF
Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We discuss Bayesian decoding methods based on an encoding generalized linear model (GLM) that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The form of the GLM likelihood ensures that the posterior distribution over the stimuli that caused an observed set of spike trains is log concave so long as the prior is. This allows the maximum a posteriori (MAP) stimulus estimate to be obtained using efficient optimization algorithms. Unfortunately, the MAP estimate can have a relatively large average error when the posterior is highly nongaussian. Here we compare several Markov chain Monte Carlo (MCMC) algorithms that allow for the calculation of general Bayesian estimators involving posterior expectations (conditional on model parameters). An efficient version of the hybrid Monte Carlo (HMC) algorithm was significantly superior to other MCMC methods for gaussian priors. When the prior distribution has sharp edges and corners, on the other hand, the “hit-and-run” algorithm performed better than other MCMC methods. Using these algorithms, we show that for this latter class of priors, the posterior mean estimate can have a considerably lower average error than MAP, whereas for gaussian priors, the two estimators have roughly equal efficiency. We also address the application of MCMC methods for extracting nonmarginal properties of the posterior distribution. For example, by using MCMC to calculate the mutual information between the stimulus and response, we verify the validity of a computationally efficient Laplace approximation to this quantity for gaussian priors in a wide range of model parameters; this makes direct model-based computation of the mutual information tractable even in the case of large observed neural populations, where methods based on binning the spike train fail. Finally, we consider the effect of uncertainty in the GLM parameters on the posterior estimators.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (12): 2533–2561.
Published: 01 December 2004
Abstract
View article
PDF
We examine a cascade encoding model for neural response in which a linear filtering stage is followed by a noisy, leaky, integrate-and-fire spike generation mechanism. This model provides a biophysically more realistic alternative to models based on Poisson (memoryless) spike generation, and can effectively reproduce a variety of spiking behaviors seen in vivo. We describe the maximum likelihood estimator for the model parameters, given only extracellular spike train responses (not intracellular voltage data). Specifically, we prove that the log-likelihood function is concave and thus has an essentially unique global maximum that can be found using gradient ascent techniques. We develop an efficient algorithm for computing the maximum likelihood solution, demonstrate the effectiveness of the resulting estimator with numerical simulations, and discuss a method of testing the model's validity using time-rescaling and density evolution techniques.