Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jong-Hoon Ahn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (9): 2457–2472.
Published: 01 September 2012
FIGURES
| View All (20)
Abstract
View article
PDF
Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (1): 57–65.
Published: 01 January 2003
Abstract
View article
PDF
We propose a constrained EM algorithm for principal component analysis (PCA) using a coupled probability model derived from single-standard factor analysis models with isotropic noise structure. The single probabilistic PCA, especially for the case where there is no noise, can find only a vector set that is a linear superposition of principal components and requires postprocessing, such as diagonalization of symmetric matrices. By contrast, the proposed algorithm finds the actual principal components, which are sorted in descending order of eigenvalue size and require no additional calculation or postprocessing. The method is easily applied to kernel PCA. It is also shown that the new EM algorithm is derived from a generalized least-squares formulation.