Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Jordi García-Ojalvo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (9): 2491–2510.
Published: 01 September 2017
FIGURES
| View All (9)
Abstract
View article
PDF
Spike synchrony, which occurs in various cortical areas in response to specific perception, action, and memory tasks, has sparked a long-standing debate on the nature of temporal organization in cortex. One prominent view is that this type of synchrony facilitates the binding or grouping of separate stimulus components. We argue instead for a more general function: a measure of the prior probability of incoming stimuli, implemented by long-range, horizontal, intracortical connections. We show that networks of this kind—pulse-coupled excitatory spiking networks in a noisy environment—can provide a sufficient substrate for stimulus-dependent spike synchrony. This allows for a quick (few spikes) estimate of the match between inputs and the input history as encoded in the network structure. Given the ubiquity of small, strongly excitatory subnetworks in cortex, we thus propose that many experimental observations of spike synchrony can be viewed as signs of input patterns that resemble long-term experience—that is, of patterns with high prior probability.