Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Joseph Snider
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (3): 708–722.
Published: 01 March 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Neurons integrate information from many neighbors when they process information. Inputs to a given neuron are thus indistinguishable from one another. Under the assumption that neurons maximize their information storage, indistinguishability is shown to place a strong constraint on the distribution of strengths between neurons. The distribution of individual synapse strengths is found to follow a modified Boltzmann distribution with strength proportional to . The model is shown to be consistent with experimental data from Caenorhabditis elegans connectivity and in vivo synaptic strength measurements. The dependence helps account for the observation of many zero or weak connections between neurons or sparsity of the neural network.