Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Justin W. M. Domhof
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (4): 926–966.
Published: 26 March 2021
Abstract
View article
PDF
Neuronal networks in rodent primary visual cortex (V1) can generate oscillations in different frequency bands depending on the network state and the level of visual stimulation. High-frequency gamma rhythms, for example, dominate the network's spontaneous activity in adult mice but are attenuated upon visual stimulation, during which the network switches to the beta band instead. The spontaneous local field potential (LFP) of juvenile mouse V1, however, mainly contains beta rhythms and presenting a stimulus does not elicit drastic changes in network oscillations. We study, in a spiking neuron network model, the mechanism in adult mice allowing for flexible switches between multiple frequency bands and contrast this to the network structure in juvenile mice that lack this flexibility. The model comprises excitatory pyramidal cells (PCs) and two types of interneurons: the parvalbumin-expressing (PV) and the somatostatinexpressing (SOM) interneuron. In accordance with experimental findings, the pyramidal-PV and pyramidal-SOM cell subnetworks are associated with gamma and beta oscillations, respectively. In our model, they are both generated via a pyramidal-interneuron gamma (PING) mechanism, wherein the PCs drive the oscillations. Furthermore, we demonstrate that large but not small visual stimulation activates SOM cells, which shift the frequency of resting-state gamma oscillations produced by the pyramidal-PV cell subnetwork so that beta rhythms emerge. Finally, we show that this behavior is obtained for only a subset of PV and SOM interneuron projection strengths, indicating that their influence on the PCs should be balanced so that they can compete for oscillatory control of the PCs. In sum, we propose a mechanism by which visual beta rhythms can emerge from spontaneous gamma oscillations in a network model of the mouse V1; for this mechanism to reproduce V1 dynamics in adult mice, balance between the effective strengths of PV and SOM cells is required.