Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Kai Keng Ang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (10): 2709–2733.
Published: 01 October 2013
FIGURES
| View All (15)
Abstract
View article
PDF
Effective learning and recovery of relevant source brain activity patterns is a major challenge to brain-computer interface using scalp EEG. Various spatial filtering solutions have been developed. Most current methods estimate an instantaneous demixing with the assumption of uncorrelatedness of the source signals. However, recent evidence in neuroscience suggests that multiple brain regions cooperate, especially during motor imagery, a major modality of brain activity for brain-computer interface. In this sense, methods that assume uncorrelatedness of the sources become inaccurate. Therefore, we are promoting a new methodology that considers both volume conduction effect and signal propagation between multiple brain regions. Specifically, we propose a novel discriminative algorithm for joint learning of propagation and spatial pattern with an iterative optimization solution. To validate the new methodology, we conduct experiments involving 16 healthy subjects and perform numerical analysis of the proposed algorithm for EEG classification in motor imagery brain-computer interface. Results from extensive analysis validate the effectiveness of the new methodology with high statistical significance.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (8): 2146–2171.
Published: 01 August 2013
FIGURES
| View All (9)
Abstract
View article
PDF
A major challenge in EEG-based brain-computer interfaces (BCIs) is the intersession nonstationarity in the EEG data that often leads to deteriorated BCI performances. To address this issue, this letter proposes a novel data space adaptation technique, EEG data space adaptation (EEG-DSA), to linearly transform the EEG data from the target space (evaluation session), such that the distribution difference to the source space (training session) is minimized. Using the Kullback-Leibler (KL) divergence criterion, we propose two versions of the EEG-DSA algorithm: the supervised version, when labeled data are available in the evaluation session, and the unsupervised version, when labeled data are not available. The performance of the proposed EEG-DSA algorithm is evaluated on the publicly available BCI Competition IV data set IIa and a data set recorded from 16 subjects performing motor imagery tasks on different days. The results show that the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the results without adaptation in terms of classification accuracy. The results also show that for subjects with poor BCI performances when no adaptation is applied, the proposed EEG-DSA algorithm in both the supervised and unsupervised versions significantly outperforms the unsupervised bias adaptation algorithm (PMean).
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (1): 205–243.
Published: 01 January 2005
Abstract
View article
PDF
System modeling with neuro-fuzzy systems involves two contradictory requirements: interpretability verses accuracy. The pseudo outer-product (POP) rule identification algorithm used in the family of pseudo outer-product-based fuzzy neural networks (POPFNN) suffered from an exponential increase in the number of identified fuzzy rules and computational complexity arising from high-dimensional data. This decreases the interpretability of the POPFNN in linguistic fuzzy modeling. This article proposes a novel rough set–based pseudo outer-product (RSPOP) algorithm that integrates the sound concept of knowledge reduction from rough set theory with the POP algorithm. The proposed algorithm not only performs feature selection through the reduction of attributes but also extends the reduction to rules without redundant attributes. As many possible reducts exist in a given rule set, an objective measure is developed for POPFNN to correctly identify the reducts that improve the inferred consequence. Experimental results are presented using published data sets and real-world application involving highway traffic flow prediction to evaluate the effectiveness of using the proposed algorithm to identify fuzzy rules in the POPFNN using compositional rule of inference and singleton fuzzifier (POPFNN-CRI(S)) architecture. Results showed that the proposed rough set–based pseudo outer-product algorithm reduces computational complexity, improves the interpretability of neuro-fuzzy systems by identifying significantly fewer fuzzy rules, and improves the accuracy of the POPFNN.