Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Kai-Min Chung
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (8): 1689–1704.
Published: 01 August 2004
Abstract
View article
PDF
In this letter, we show that decomposition methods with alpha seeding are extremely useful for solving a sequence of linear support vector machines (SVMs) with more data than attributes. This strategy is motivated by Keerthi and Lin (2003), who proved that for an SVM with data not linearly separable, after C is large enough, the dual solutions have the same free and bounded components. We explain why a direct use of decomposition methods for linear SVMs is sometimes very slow and then analyze why alpha seeding is much more effective for linear than nonlinear SVMs. We also conduct comparisons with other methods that are efficient for linear SVMs and demonstrate the effectiveness of alpha seeding techniques in model selection.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (11): 2643–2681.
Published: 01 November 2003
Abstract
View article
PDF
An important approach for efficient support vector machine (SVM) model selection is to use differentiable bounds of the leave-one-out (loo) error. Past efforts focused on finding tight bounds of loo (e.g., radius margin bounds, span bounds). However, their practical viability is still not very satisfactory. Duan, Keerthi, and Poo (2003) showed that radius margin bound gives good prediction for L2-SVM, one of the cases we look at. In this letter, through analyses about why this bound performs well for L2-SVM, we show that finding a bound whose minima are in a region with small loo values may be more important than its tightness. Based on this principle, we propose modified radius margin bounds for L1-SVM (the other case) where the original bound is applicable only to the hard-margin case. Our modification for L1-SVM achieves comparable performance to L2-SVM. To study whether L1-or L2-SVM should be used, we analyze other properties, such as their differentiability, number of support vectors, and number of free support vectors. In this aspect, L1-SVM possesses the advantage of having fewer support vectors. Their implementations are also different, so we discuss related issues in detail.