Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Karl J. Friston
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Active Inference and Intentional Behavior
UnavailablePublisher: Journals Gateway
Neural Computation (2025) 37 (4): 666–700.
Published: 18 March 2025
FIGURES
| View all 9
Abstract
View articletitled, Active Inference and Intentional Behavior
View
PDF
for article titled, Active Inference and Intentional Behavior
Recent advances in theoretical biology suggest that key definitions of basal cognition and sentient behavior may arise as emergent properties of in vitro cell cultures and neuronal networks. Such neuronal networks reorganize activity to demonstrate structured behaviors when embodied in structured information landscapes. In this article, we characterize this kind of self-organization through the lens of the free energy principle, that is, as self-evidencing. We do this by first discussing the definitions of reactive and sentient behavior in the setting of active inference, which describes the behavior of agents that model the consequences of their actions. We then introduce a formal account of intentional behavior that describes agents as driven by a preferred end point or goal in latent state-spaces. We then investigate these forms of (reactive, sentient, and intentional) behavior using simulations. First, we simulate the in vitro experiments, in which neuronal cultures modulated activity to improve gameplay in a simplified version of Pong by implementing nested, free energy minimizing processes. The simulations are then used to deconstruct the ensuing predictive behavior, leading to the distinction between merely reactive, sentient, and intentional behavior with the latter formalized in terms of inductive inference. This distinction is further studied using simple machine learning benchmarks (navigation in a grid world and the Tower of Hanoi problem) that show how quickly and efficiently adaptive behavior emerges under an inductive form of active inference.
Includes: Supplementary data
Journal Articles
Active Inference: Demystified and Compared
UnavailablePublisher: Journals Gateway
Neural Computation (2021) 33 (3): 674–712.
Published: 01 March 2021
FIGURES
Abstract
View articletitled, Active Inference: Demystified and Compared
View
PDF
for article titled, Active Inference: Demystified and Compared
Active inference is a first principle account of how autonomous agents operate in dynamic, nonstationary environments. This problem is also considered in reinforcement learning, but limited work exists on comparing the two approaches on the same discrete-state environments. In this letter, we provide (1) an accessible overview of the discrete-state formulation of active inference, highlighting natural behaviors in active inference that are generally engineered in reinforcement learning, and (2) an explicit discrete-state comparison between active inference and reinforcement learning on an OpenAI gym baseline. We begin by providing a condensed overview of the active inference literature, in particular viewing the various natural behaviors of active inference agents through the lens of reinforcement learning. We show that by operating in a pure belief-based setting, active inference agents can carry out epistemic exploration—and account for uncertainty about their environment—in a Bayes-optimal fashion. Furthermore, we show that the reliance on an explicit reward signal in reinforcement learning is removed in active inference, where reward can simply be treated as another observation we have a preference over; even in the total absence of rewards, agent behaviors are learned through preference learning. We make these properties explicit by showing two scenarios in which active inference agents can infer behaviors in reward-free environments compared to both Q-learning and Bayesian model-based reinforcement learning agents and by placing zero prior preferences over rewards and learning the prior preferences over the observations corresponding to reward. We conclude by noting that this formalism can be applied to more complex settings (e.g., robotic arm movement, Atari games) if appropriate generative models can be formulated. In short, we aim to demystify the behavior of active inference agents by presenting an accessible discrete state-space and time formulation and demonstrate these behaviors in a OpenAI gym environment, alongside reinforcement learning agents.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (2): 398–446.
Published: 01 February 2021
FIGURES
Abstract
View articletitled, Deeply Felt Affect: The Emergence of Valence in Deep Active Inference
View
PDF
for article titled, Deeply Felt Affect: The Emergence of Valence in Deep Active Inference
The positive-negative axis of emotional valence has long been recognized as fundamental to adaptive behavior, but its origin and underlying function have largely eluded formal theorizing and computational modeling. Using deep active inference, a hierarchical inference scheme that rests on inverting a model of how sensory data are generated, we develop a principled Bayesian model of emotional valence. This formulation asserts that agents infer their valence state based on the expected precision of their action model—an internal estimate of overall model fitness (“subjective fitness”). This index of subjective fitness can be estimated within any environment and exploits the domain generality of second-order beliefs (beliefs about beliefs). We show how maintaining internal valence representations allows the ensuing affective agent to optimize confidence in action selection preemptively. Valence representations can in turn be optimized by leveraging the (Bayes-optimal) updating term for subjective fitness, which we label affective charge (AC). AC tracks changes in fitness estimates and lends a sign to otherwise unsigned divergences between predictions and outcomes. We simulate the resulting affective inference by subjecting an in silico affective agent to a T-maze paradigm requiring context learning, followed by context reversal. This formulation of affective inference offers a principled account of the link between affect, (mental) action, and implicit metacognition. It characterizes how a deep biological system can infer its affective state and reduce uncertainty about such inferences through internal action (i.e., top-down modulation of priors that underwrite confidence). Thus, we demonstrate the potential of active inference to provide a formal and computationally tractable account of affect. Our demonstration of the face validity and potential utility of this formulation represents the first step within a larger research program. Next, this model can be leveraged to test the hypothesized role of valence by fitting the model to behavioral and neuronal responses.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (9): 2319–2347.
Published: 01 September 2018
FIGURES
| View all 5
Abstract
View articletitled, The Discrete and Continuous Brain: From Decisions to Movement—And Back Again
View
PDF
for article titled, The Discrete and Continuous Brain: From Decisions to Movement—And Back Again
To act upon the world, creatures must change continuous variables such as muscle length or chemical concentration. In contrast, decision making is an inherently discrete process, involving the selection among alternative courses of action. In this article, we consider the interface between the discrete and continuous processes that translate our decisions into movement in a Newtonian world—and how movement informs our decisions. We do so by appealing to active inference, with a special focus on the oculomotor system. Within this exemplar system, we argue that the superior colliculus is well placed to act as a discrete-continuous interface. Interestingly, when the neuronal computations within the superior colliculus are formulated in terms of active inference, we find that many aspects of its neuroanatomy emerge from the computations it must perform in this role.
Journal Articles
Active Inference, Curiosity and Insight
UnavailablePublisher: Journals Gateway
Neural Computation (2017) 29 (10): 2633–2683.
Published: 01 October 2017
Abstract
View articletitled, Active Inference, Curiosity and Insight
View
PDF
for article titled, Active Inference, Curiosity and Insight
This article offers a formal account of curiosity and insight in terms of active (Bayesian) inference. It deals with the dual problem of inferring states of the world and learning its statistical structure. In contrast to current trends in machine learning (e.g., deep learning), we focus on how people attain insight and understanding using just a handful of observations, which are solicited through curious behavior. We use simulations of abstract rule learning and approximate Bayesian inference to show that minimizing (expected) variational free energy leads to active sampling of novel contingencies. This epistemic behavior closes explanatory gaps in generative models of the world, thereby reducing uncertainty and satisfying curiosity. We then move from epistemic learning to model selection or structure learning to show how abductive processes emerge when agents test plausible hypotheses about symmetries (i.e., invariances or rules) in their generative models. The ensuing Bayesian model reduction evinces mechanisms associated with sleep and has all the hallmarks of “aha” moments. This formulation moves toward a computational account of consciousness in the pre-Cartesian sense of sharable knowledge (i.e., con : “together”; scire : “to know”).