Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Karlheinz Meier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (9): 2418–2438.
Published: 01 September 2018
FIGURES
| View All (6)
Abstract
View article
PDF
The extreme complexity of the brain has attracted the attention of neuroscientists and other researchers for a long time. More recently, the neuromorphic hardware has matured to provide a new powerful tool to study neuronal dynamics. Here, we study neuronal dynamics using different settings on a neuromorphic chip built with flexible parameters of neuron models. Our unique setting in the network of leaky integrate-and-fire (LIF) neurons is to introduce a weak noise environment. We observed three different types of collective neuronal activities, or phases, separated by sharp boundaries, or phase transitions. From this, we construct a rudimentary phase diagram of neuronal dynamics and demonstrate that a noise-induced chaotic phase (N-phase), which is dominated by neuronal avalanche activity (intermittent aperiodic neuron firing), emerges in the presence of noise and its width grows with the noise intensity. The dynamics can be manipulated in this N-phase. Our results and comparison with clinical data is consistent with the literature and our previous work showing that healthy brain must reside in the N-phase. We argue that the brain phase diagram with further refinement may be used for the diagnosis and treatment of mental disease and also suggest that the dynamics may be manipulated to serve as a means of new information processing (e.g., for optimization). Neuromorphic chips, similar to the one we used but with a variety of neuron models, may be used to further enhance the understanding of human brain function and accelerate the development of neuroscience research.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (11): 2958–3010.
Published: 01 November 2007
Abstract
View article
PDF
We propose a Markov process model for spike-frequency adapting neural ensembles that synthesizes existing mean-adaptation approaches, population density methods, and inhomogeneous renewal theory, resulting in a unified and tractable framework that goes beyond renewal and mean-adaptation theories by accounting for correlations between subsequent interspike intervals. A method for efficiently generating inhomogeneous realizations of the proposed Markov process is given, numerical methods for solving the population equation are presented, and an expression for the first-order interspike interval correlation is derived. Further, we show that the full five-dimensional master equation for a conductance-based integrate-and-fire neuron with spike-frequency adaptation and a relative refractory mechanism driven by Poisson spike trains can be reduced to a two-dimensional generalization of the proposed Markov process by an adiabatic elimination of fast variables. For static and dynamic stimulation, negative serial interspike interval correlations and transient population responses, respectively, of Monte Carlo simulations of the full five-dimensional system can be accurately described by the proposed two-dimensional Markov process.