Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Kedi Xu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (7): 1356–1379.
Published: 01 July 2019
FIGURES
| View All (9)
Abstract
View article
PDF
With the development of neural recording technology, it has become possible to collect activities from hundreds or even thousands of neurons simultaneously. Visualization of neural population dynamics can help neuroscientists analyze large-scale neural activities efficiently. In this letter, Laplacian eigenmaps is applied to this task for the first time, and the experimental results show that the proposed method significantly outperforms the commonly used methods. This finding was confirmed by the systematic evaluation using nonhuman primate data, which contained the complex dynamics well suited for testing. According to our results, Laplacian eigenmaps is better than the other methods in various ways and can clearly visualize interesting biological phenomena related to neural dynamics.
Includes: Supplementary data