Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Ken-ichi Amemori
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (12): 2763–2797.
Published: 01 December 2001
Abstract
View article
PDF
This article presents a new theoretical framework to consider the dynamics of a stochastic spiking neuron model with general membrane response to input spike. We assume that the input spikes obey an inhomogeneous Poisson process. The stochastic process of the membrane potential then becomes a gaussian process. When a general type of the membrane response is assumed, the stochastic process becomes a Markov-gaussian process. We present a calculation method for the membrane potential density and the firing probability density. Our new formulation is the extension of the existing formulation based on diffusion approximation. Although the single Markov assumption of the diffusion approximation simplifies the stochastic process analysis, the calculation is inaccurate when the stochastic process involves a multiple Markov property. We find that the variation of the shape of the membrane response, which has often been ignored in existing stochastic process studies, significantly affects the firing probability. Our approach can consider the reset effect, which has been difficult to deal with by analysis based on the first passage time density.