Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Ken-ichiro Soma
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (5): 1083–1101.
Published: 01 May 2015
FIGURES
| View All (41)
Abstract
View article
PDF
We propose neural network model that demonstrates the phenomenon of signal transfer between separated neuron groups via other chaotic neurons that show no apparent correlations with the input signal. The model is a recurrent neural network in which it is supposed that synchronous behavior between small groups of input and output neurons has been learned as fragments of high-dimensional memory patterns, and depletion of neural connections results in chaotic wandering dynamics. Computer experiments show that when a strong oscillatory signal is applied to an input group in the chaotic regime, the signal is successfully transferred to the corresponding output group, although no correlation is observed between the input signal and the intermediary neurons. Signal transfer is also observed when multiple signals are applied simultaneously to separate input groups belonging to different memory attractors. In this sense simultaneous multichannel communications are realized, and the chaotic neural dynamics acts as a signal transfer medium in which the signal appears to be hidden.