Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
Kenji Doya
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2024) 36 (9): 1854–1885.
Published: 19 August 2024
FIGURES
| View All (9)
Abstract
View article
PDF
In reinforcement learning (RL), artificial agents are trained to maximize numerical rewards by performing tasks. Exploration is essential in RL because agents must discover information before exploiting it. Two rewards encouraging efficient exploration are the entropy of action policy and curiosity for information gain. Entropy is well established in the literature, promoting randomized action selection. Curiosity is defined in a broad variety of ways in literature, promoting discovery of novel experiences. One example, prediction error curiosity, rewards agents for discovering observations they cannot accurately predict. However, such agents may be distracted by unpredictable observational noises known as curiosity traps. Based on the free energy principle (FEP), this letter proposes hidden state curiosity, which rewards agents by the KL divergence between the predictive prior and posterior probabilities of latent variables. We trained six types of agents to navigate mazes: baseline agents without rewards for entropy or curiosity and agents rewarded for entropy and/or either prediction error curiosity or hidden state curiosity. We find that entropy and curiosity result in efficient exploration, especially both employed together. Notably, agents with hidden state curiosity demonstrate resilience against curiosity traps, which hinder agents with prediction error curiosity. This suggests implementing the FEP that may enhance the robustness and generalization of RL models, potentially aligning the learning processes of artificial and biological agents.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (3): 577–606.
Published: 01 March 2012
FIGURES
| View All (17)
Abstract
View article
PDF
Reinforcement learning (RL) can provide a basic framework for autonomous robots to learn to control and maximize future cumulative rewards in complex environments. To achieve high performance, RL controllers must consider the complex external dynamics for movements and task (reward function) and optimize control commands. For example, a robot playing tennis and squash needs to cope with the different dynamics of a tennis or squash racket and such dynamic environmental factors as the wind. In addition, this robot has to tailor its tactics simultaneously under the rules of either game. This double complexity of the external dynamics and reward function sometimes becomes more complex when both the multiple dynamics and multiple reward functions switch implicitly, as in the situation of a real (multi-agent) game of tennis where one player cannot observe the intention of her opponents or her partner. The robot must consider its opponent's and its partner's unobservable behavioral goals (reward function). In this article, we address how an RL agent should be designed to handle such double complexity of dynamics and reward. We have previously proposed modular selection and identification for control (MOSAIC) to cope with nonstationary dynamics where appropriate controllers are selected and learned among many candidates based on the error of its paired dynamics predictor: the forward model. Here we extend this framework for RL and propose MOSAIC-MR architecture. It resembles MOSAIC in spirit and selects and learns an appropriate RL controller based on the RL controller's TD error using the errors of the dynamics (the forward model) and the reward predictors. Furthermore, unlike other MOSAIC variants for RL, RL controllers are not a priori paired with the fixed predictors of dynamics and rewards. The simulation results demonstrate that MOSAIC-MR outperforms other counterparts because of this flexible association ability among RL controllers, forward models, and reward predictors.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (2): 342–376.
Published: 01 February 2010
FIGURES
| View All (7)
Abstract
View article
PDF
Most conventional policy gradient reinforcement learning (PGRL) algorithms neglect (or do not explicitly make use of) a term in the average reward gradient with respect to the policy parameter. That term involves the derivative of the stationary state distribution that corresponds to the sensitivity of its distribution to changes in the policy parameter. Although the bias introduced by this omission can be reduced by setting the forgetting rate γ for the value functions close to 1, these algorithms do not permit γ to be set exactly at γ = 1. In this article, we propose a method for estimating the log stationary state distribution derivative (LSD) as a useful form of the derivative of the stationary state distribution through backward Markov chain formulation and a temporal difference learning framework. A new policy gradient (PG) framework with an LSD is also proposed, in which the average reward gradient can be estimated by setting γ = 0, so it becomes unnecessary to learn the value functions. We also test the performance of the proposed algorithms using simple benchmark tasks and show that these can improve the performances of existing PG methods.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (3): 730–756.
Published: 01 March 2007
Abstract
View article
PDF
In this study, we propose a novel use of reinforcement learning for estimating hidden variables and parameters of nonlinear dynamical systems. A critical issue in hidden-state estimation is that we cannot directly observe estimation errors. However, by defining errors of observable variables as a delayed penalty, we can apply a reinforcement learning frame-work to state estimation problems. Specifically, we derive a method to construct a nonlinear state estimator by finding an appropriate feedback input gain using the policy gradient method. We tested the proposed method on single pendulum dynamics and show that the joint angle variable could be successfully estimated by observing only the angular velocity, and vice versa. In addition, we show that we could acquire a state estimator for the pendulum swing-up task in which a swing-up controller is also acquired by reinforcement learning simultaneously. Furthermore, we demonstrate that it is possible to estimate the dynamics of the pendulum itself while the hidden variables are estimated in the pendulum swing-up task. Application of the proposed method to a two-linked biped model is also presented.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (2): 335–359.
Published: 01 February 2005
Abstract
View article
PDF
This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both off-line learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H ∞ control, we consider a differential game in which a “disturbing” agent tries to make the worst possible disturbance while a “control” agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H ∞ control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (6): 1347–1369.
Published: 01 June 2002
Abstract
View article
PDF
We propose a modular reinforcement learning architecture for nonlinear, nonstationary control tasks, which we call multiple model-based reinforcement learning (MMRL). The basic idea is to decompose a complex task into multiple domains in space and time based on the predictability of the environmental dynamics. The system is composed of multiple modules, each of which consists of a state prediction model and a reinforcement learning controller. The “responsibility signal,” which is given by the softmax function of the prediction errors, is used to weight the outputs of multiple modules, as well as to gate the learning of the prediction models and the reinforcement learning controllers. We formulate MMRL for both discrete-time, finite-state case and continuous-time, continuous-state case. The performance of MMRL was demonstrated for discrete case in a nonstationary hunting task in a grid world and for continuous case in a nonlinear, nonstationary control task of swinging up a pendulum with variable physical parameters.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (1): 219–245.
Published: 01 January 2000
Abstract
View article
PDF
This article presents a reinforcement learning framework for continuous-time dynamical systems without a priori discretization of time, state, and action. Basedonthe Hamilton-Jacobi-Bellman (HJB) equation for infinite-horizon, discounted reward problems, we derive algorithms for estimating value functions and improving policies with the use of function approximators. The process of value function estimation is formulated as the minimization of a continuous-time form of the temporal difference (TD) error. Update methods based on backward Euler approximation and exponential eligibility traces are derived, and their correspondences with the conventional residual gradient, TD (0), and TD ( λ ) algorithms are shown. For policy improvement, two methods—a continuous actor-critic method and a value-gradient-based greedy policy—are formulated. As a special case of the latter, a nonlinear feedback control law using the value gradient and the model of the input gain is derived. The advantage updating, a model-free algorithm derived previously, is also formulated in the HJB-based framework. The performance of the proposed algorithms is first tested in a nonlinear control task of swinging a pendulum up with limited torque. It is shown in the simulations that (1) the task is accomplished by the continuous actor-critic method in a number of trials several times fewer than by the conventional discrete actor-critic method; (2) among the continuous policy update methods, the value-gradient-based policy with a known or learned dynamic model performs several times better than the actor-critic method; and (3) a value function update using exponential eligibility traces is more efficient and stable than that based on Euler approximation. The algorithms are then tested in a higher-dimensional task: cart-pole swing-up. This task is accomplished in several hundred trials using the value-gradient-based policy with a learned dynamic model.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (1): 113–132.
Published: 01 January 1998
Abstract
View article
PDF
In consideration of working memory as a means for goal-directed behavior in nonstationary environments, we argue that the dynamics of working memory should satisfy two opposing demands: long-term maintenance and quick transition. These two characteristics are contradictory within the linear domain. We propose the near-saddle-node bifurcation behavior of a sigmoidal unit with a self-connection as a candidate of the dynamical mechanism that satisfies both of these demands. It is shown in evolutionary programming experiments that the near-saddle-node bifurcation behavior can be found in recurrent networks optimized for a task that requires efficient use of working memory. The result suggests that the near-saddle-node bifurcation behavior may be a functional necessity for survival in nonstationary environments.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1994) 6 (4): 696–717.
Published: 01 July 1994
Abstract
View article
PDF
An artificial neural network approach to dimension reduction of dynamical systems is proposed and applied to conductance-based neuron models. Networks with bottleneck layers of continuous-time dynamical units could make a two-dimensional model from the trajectories of the Hodgkin-Huxley model and a three-dimensional model from the trajectories of a six-dimensional bursting neuron model. Nullcline analysis of these reduced models revealed the bifurcations of the dynamical system underlying firing and bursting behaviors.