Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Kenneth W. Bauer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (1): 161–183.
Published: 01 January 1997
Abstract
View article
PDF
Where should a researcher conduct experiments to provide training data for a multilayer perceptron? This question is investigated, and a statistical method for selecting optimal experimental design points for multiple output multilayer perceptrons is introduced. Multiple class discrimination problems are examined using a framework in which the multilayer perceptron is viewed as a multivariate nonlinear regression model. Following a Bayesian formulation for the case where the variance-covariance matrix of the responses is unknown, a selection criterion is developed. This criterion is based on the volume of the joint confidence ellipsoid for the weights in a multilayer perceptron. An example is used to demonstrate the superiority of optimally selected design points over randomly chosen points, as well as points chosen in a grid pattern. Simplification of the basic criterion is offered through the use of Hadamard matrices to produce uncorrelated outputs.