Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Kenta Kanamori
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (8): 1718–1750.
Published: 01 August 2019
FIGURES
Abstract
View article
PDF
In this letter, we propose a variable selection method for general nonparametric kernel-based estimation. The proposed method consists of two-stage estimation: (1) construct a consistent estimator of the target function, and (2) approximate the estimator using a few variables by ℓ 1 -type penalized estimation. We see that the proposed method can be applied to various kernel nonparametric estimation such as kernel ridge regression, kernel-based density, and density-ratio estimation. We prove that the proposed method has the property of variable selection consistency when the power series kernel is used. Here, the power series kernel is a certain class of kernels containing polynomial and exponential kernels. This result is regarded as an extension of the variable selection consistency for the nonnegative garrote (NNG), a special case of the adaptive Lasso, to the kernel-based estimators. Several experiments, including simulation studies and real data applications, show the effectiveness of the proposed method.