Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Kerstin Preuschoff
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (1): 34–83.
Published: 01 January 2018
FIGURES
| View All (8)
Abstract
View article
PDF
Surprise describes a range of phenomena from unexpected events to behavioral responses. We propose a novel measure of surprise and use it for surprise-driven learning. Our surprise measure takes into account data likelihood as well as the degree of commitment to a belief via the entropy of the belief distribution. We find that surprise-minimizing learning dynamically adjusts the balance between new and old information without the need of knowledge about the temporal statistics of the environment. We apply our framework to a dynamic decision-making task and a maze exploration task. Our surprise-minimizing framework is suitable for learning in complex environments, even if the environment undergoes gradual or sudden changes, and it could eventually provide a framework to study the behavior of humans and animals as they encounter surprising events.