Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Kevin Berlemont
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (1): 45–77.
Published: 01 January 2022
Abstract
View article
PDF
In experiments on perceptual decision making, individuals learn a categorization task through trial-and-error protocols. We explore the capacity of a decision-making attractor network to learn a categorization task through reward-based, Hebbian-type modifications of the weights incoming from the stimulus encoding layer. For the latter, we assume a standard layer of a large number of stimulus-specific neurons. Within the general framework of Hebbian learning, we have hypothesized that the learning rate is modulated by the reward at each trial. Surprisingly, we find that when the coding layer has been optimized in view of the categorization task, such reward-modulated Hebbian learning (RMHL) fails to extract efficiently the category membership. In previous work, we showed that the attractor neural networks' nonlinear dynamics accounts for behavioral confidence in sequences of decision trials. Taking advantage of these findings, we propose that learning is controlled by confidence, as computed from the neural activity of the decision-making attractor network. Here we show that this confidence-controlled, reward-based Hebbian learning efficiently extracts categorical information from the optimized coding layer. The proposed learning rule is local and, in contrast to RMHL, does not require storing the average rewards obtained on previous trials. In addition, we find that the confidence-controlled learning rule achieves near-optimal performance. In accordance with this result, we show that the learning rule approximates a gradient descent method on a maximizing reward cost function.