Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kevin Gurney
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (12): 3216–3225.
Published: 01 December 2007
Abstract
View article
PDF
Izhikevich (2003) proposed a new canonical neuron model of spike generation. The model was surprisingly simple yet able to accurately replicate the firing patterns of different types of cortical cell. Here, we derive a solution method that allows efficient simulation of the model.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (2): 442–477.
Published: 01 February 2007
Abstract
View article
PDF
Neurophysiological studies have identified a number of brain regions critically involved in solving the problem of action selection or decision making. In the case of highly practiced tasks, these regions include cortical areas hypothesized to integrate evidence supporting alternative actions and the basal ganglia, hypothesized to act as a central switch in gating behavioral requests. However, despite our relatively detailed knowledge of basal ganglia biology and its connectivity with the cortex and numerical simulation studies demonstrating selective function, no formal theoretical framework exists that supplies an algorithmic description of these circuits. This article shows how many aspects of the anatomy and physiology of the circuit involving the cortex and basal ganglia are exactly those required to implement the computation defined by an asymptotically optimal statistical test for decision making: the multihypothesis sequential probability ratio test (MSPRT). The resulting model of basal ganglia provides a new framework for understanding the computation in the basal ganglia during decision making in highly practiced tasks. The predictions of the theory concerning the properties of particular neuronal populations are validated in existing experimental data. Further, we show that this neurobiologically grounded implementation of MSPRT outperforms other candidates for neural decision making, that it is structurally and parametrically robust, and that it can accommodate cortical mechanisms for decision making in a way that complements those in basal ganglia.