Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kevin N. Gurney
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (7): 1588–1615.
Published: 16 June 2022
Abstract
View article
PDF
The problem of selecting one action from a set of different possible actions, simply referred to as the problem of action selection, is a ubiquitous challenge in the animal world. For vertebrates, the basal ganglia (BG) are widely thought to implement the core computation to solve this problem, as its anatomy and physiology are well suited to this end. However, the BG still display physiological features whose role in achieving efficient action selection remains unclear. In particular, it is known that the two types of dopaminergic receptors (D1 and D2) present in the BG give rise to mechanistically different responses. The overall effect will be a difference in sensitivity to dopamine, which may have ramifications for action selection. However, which receptor type leads to a stronger response is unclear due to the complexity of the intracellular mechanisms involved. In this study, we use an existing, high-level computational model of the BG, which assumes that dopamine contributes to action selection by enabling a switch between different selection regimes, to predict which of D1 or D2 has the greater sensitivity. Thus, we ask, Assuming dopamine enables a switch between action selection regimes in the BG, what functional sensitivity values would result in improved action selection computation? To do this, we quantitatively assessed the model's capacity to perform action selection as we parametrically manipulated the sensitivity weights of D1 and D2. We show that differential (rather than equal) D1 and D2 sensitivity to dopaminergic input improves the switch between selection regimes during the action selection computation in our model. Specifically, greater D2 sensitivity compared to D1 led to these improvements.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (11): 2924–2945.
Published: 01 November 2012
FIGURES
Abstract
View article
PDF
The basal ganglia are a subcortical group of interconnected nuclei involved in mediating action selection within cortex. A recent proposal is that this selection leads to optimal decision making over multiple alternatives because the basal ganglia anatomy maps onto a network implementation of an optimal statistical method for hypothesis testing, assuming that cortical activity encodes evidence for constrained gaussian-distributed alternatives. This letter demonstrates that this model of the basal ganglia extends naturally to encompass general Bayesian sequential analysis over arbitrary probability distributions, which raises the proposal to a practically realizable theory over generic perceptual hypotheses. We also show that the evidence in this model can represent either log likelihoods, log-likelihood ratios, or log odds, all leading proposals for the cortical processing of sensory data. For these reasons, we claim that the basal ganglia optimize decision making over general perceptual hypotheses represented in cortex. The relation of this theory to cortical encoding, cortico-basal ganglia anatomy, and reinforcement learning is discussed.