Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Kiersten M. Ruda
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (6): 995–1027.
Published: 12 May 2023
Abstract
View articletitled, Scalable Variational Inference for Low-Rank Spatiotemporal Receptive Fields
View
PDF
for article titled, Scalable Variational Inference for Low-Rank Spatiotemporal Receptive Fields
An important problem in systems neuroscience is to characterize how a neuron integrates sensory inputs across space and time. The linear receptive field provides a mathematical characterization of this weighting function and is commonly used to quantify neural response properties and classify cell types. However, estimating receptive fields is difficult in settings with limited data and correlated or high-dimensional stimuli. To overcome these difficulties, we propose a hierarchical model designed to flexibly parameterize low-rank receptive fields. The model includes gaussian process priors over spatial and temporal components of the receptive field, encouraging smoothness in space and time. We also propose a new temporal prior, temporal relevance determination, which imposes a variable degree of smoothness as a function of time lag. We derive a scalable algorithm for variational Bayesian inference for both spatial and temporal receptive field components and hyperparameters. The resulting estimator scales to high-dimensional settings in which full-rank maximum likelihood or a posteriori estimates are intractable. We evaluate our approach on neural data from rat retina and primate cortex and show that it substantially outperforms a variety of existing estimators. Our modeling approach will have useful extensions to a variety of other high-dimensional inference problems with smooth or low-rank structure.