Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Kohei Hatano
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (8): 1580–1613.
Published: 01 August 2020
FIGURES
Abstract
View article
PDF
We propose a new formulation of multiple-instance learning (MIL), in which a unit of data consists of a set of instances called a bag. The goal is to find a good classifier of bags based on the similarity with a “shapelet” (or pattern), where the similarity of a bag with a shapelet is the maximum similarity of instances in the bag. In previous work, some of the training instances have been chosen as shapelets with no theoretical justification. In our formulation, we use all possible, and thus infinitely many, shapelets, resulting in a richer class of classifiers. We show that the formulation is tractable, that is, it can be reduced through linear programming boosting (LPBoost) to difference of convex (DC) programs of finite (actually polynomial) size. Our theoretical result also gives justification to the heuristics of some previous work. The time complexity of the proposed algorithm highly depends on the size of the set of all instances in the training sample. To apply to the data containing a large number of instances, we also propose a heuristic option of the algorithm without the loss of the theoretical guarantee. Our empirical study demonstrates that our algorithm uniformly works for shapelet learning tasks on time-series classification and various MIL tasks with comparable accuracy to the existing methods. Moreover, we show that the proposed heuristics allow us to achieve the result in reasonable computational time.
Journal Articles
An Online Policy Gradient Algorithm for Markov Decision Processes with Continuous States and Actions
Publisher: Journals Gateway
Neural Computation (2016) 28 (3): 563–593.
Published: 01 March 2016
FIGURES
| View All (4)
Abstract
View article
PDF
We consider the learning problem under an online Markov decision process (MDP) aimed at learning the time-dependent decision-making policy of an agent that minimizes the regret—the difference from the best fixed policy. The difficulty of online MDP learning is that the reward function changes over time. In this letter, we show that a simple online policy gradient algorithm achieves regret for T steps under a certain concavity assumption and under a strong concavity assumption. To the best of our knowledge, this is the first work to present an online MDP algorithm that can handle continuous state, action, and parameter spaces with guarantee. We also illustrate the behavior of the proposed online policy gradient method through experiments.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (5): 1459–1484.
Published: 01 May 2009
FIGURES
| View All (7)
Abstract
View article
PDF
We study the problem of classification when only a dissimilarity function between objects is accessible. That is, data samples are represented not by feature vectors but in terms of their pairwise dissimilarities. We establish sufficient conditions for dissimilarity functions to allow building accurate classifiers. The theory immediately suggests a learning paradigm: construct an ensemble of simple classifiers, each depending on a pair of examples; then find a convex combination of them to achieve a large margin. We next develop a practical algorithm referred to as dissimilarity-based boosting (DBoost) for learning with dissimilarity functions under theoretical guidance. Experiments on a variety of databases demonstrate that the DBoost algorithm is promising for several dissimilarity measures widely used in practice.