Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Krešimir Josić
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (6): 1561–1610.
Published: 01 June 2017
FIGURES
| View All (62)
Abstract
View article
PDF
In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (11): 2318–2353.
Published: 01 November 2015
FIGURES
| View All (62)
Abstract
View article
PDF
Humans and other animals base their decisions on noisy sensory input. Much work has been devoted to understanding the computations that underlie such decisions. The problem has been studied in a variety of tasks and with stimuli of differing complexity. However, how the statistical structure of stimuli, along with perceptual measurement noise, affects perceptual judgments is not well understood. Here we examine how correlations between the components of a stimulus—stimulus correlations—together with correlations in sensory noise, affect decision making. As an example, we consider the task of detecting the presence of a single or multiple targets among distractors. We assume that both the distractors and the observer’s measurements of the stimuli are correlated. The computations of an optimal observer in this task are nontrivial yet can be analyzed and understood intuitively. We find that when distractors are strongly correlated, measurement correlations can have a strong impact on performance. When distractor correlations are weak, measurement correlations have little impact unless the number of stimuli is large. Correlations in neural responses to structured stimuli can therefore have a strong impact on perceptual judgments.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (5): 1261–1305.
Published: 01 May 2011
FIGURES
| View All (17)
Abstract
View article
PDF
Correlations between neuronal spike trains affect network dynamics and population coding. Overlapping afferent populations and correlations between presynaptic spike trains introduce correlations between the inputs to downstream cells. To understand network activity and population coding, it is therefore important to understand how these input correlations are transferred to output correlations.Recent studies have addressed this question in the limit of many inputs with infinitesimal postsynaptic response amplitudes, where the total input can be approximated by gaussian noise. In contrast, we address the problem of correlation transfer by representing input spike trains as point processes, with each input spike eliciting a finite postsynaptic response. This approach allows us to naturally model synaptic noise and recurrent coupling and to treat excitatory and inhibitory inputs separately.We derive several new results that provide intuitive insights into the fundamental mechanisms that modulate the transfer of spiking correlations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (10): 2774–2804.
Published: 01 October 2009
FIGURES
| View All (6)
Abstract
View article
PDF
The magnitude of correlations between stimulus-driven responses of pairs of neurons can itself be stimulus dependent. We examine how this dependence affects the information carried by neural populations about the stimuli that drive them. Stimulus-dependent changes in correlations can both carry information directly and modulate the information separately carried by the firing rates and variances. We use Fisher information to quantify these effects and show that, although stimulus-dependent correlations often carry little information directly, their modulatory effects on the overall information can be large. In particular, if the stimulus dependence is such that correlations increase with stimulus-induced firing rates, this can significantly enhance the information of the population when the structure of correlations is determined solely by the stimulus. However, in the presence of additional strong spatial decay of correlations, such stimulus dependence may have a negative impact. Opposite relationships hold when correlations decrease with firing rates.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (5): 1251–1294.
Published: 01 May 2007
Abstract
View article
PDF
We consider a fast-slow excitable system subject to a stochastic excitatory input train and show that under general conditions, its long-term behavior is captured by an irreducible Markov chain with a limiting distribution. This limiting distribution allows for the analytical calculation of the system's probability of firing in response to each input, the expected number of response failures between firings, and the distribution of slow variable values between firings. Moreover, using this approach, it is possible to understand why the system will not have a stationary distribution and why Monte Carlo simulations do not converge under certain conditions. The analytical calculations involved can be performed whenever the distribution of interexcitation intervals and the recovery dynamics of the slow variable are known. The method can be extended to other models that feature a single variable that builds up to a threshold where an instantaneous spike and reset occur. We also discuss how the Markov chain analysis generalizes to any pair of input trains, excitatory or inhibitory and synaptic or not, such that the frequencies of the two trains are sufficiently different from each other. We illustrate this analysis on a model thalamocortical (TC) cell subject to two example distributions of excitatory synaptic inputs in the cases of constant and rhythmic inhibition. The analysis shows a drastic drop in the likelihood of firing just after inhibitory onset in the case of rhythmic inhibition, relative even to the case of elevated but constant inhibition. This observation provides support for a possible mechanism for the induction of motor symptoms in Parkinson's disease and for their relief by deep brain stimulation, analyzed in Rubin and Terman (2004).