Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Kyunghyun Cho
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (4): 857–884.
Published: 01 April 2018
FIGURES
| View All (4)
Abstract
View article
PDF
We extend the neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing trainable address vectors. This addressing scheme maintains for each memory cell two separate vectors, content and address vectors. This allows the D-NTM to learn a wide variety of location-based addressing strategies, including both linear and nonlinear ones. We implement the D-NTM with both continuous and discrete read and write mechanisms. We investigate the mechanisms and effects of learning to read and write into a memory through experiments on Facebook bAbI tasks using both a feedforward and GRU controller. We provide extensive analysis of our model and compare different variations of neural Turing machines on this task. We show that our model outperforms long short-term memory and NTM variants. We provide further experimental results on the sequential MNIST, Stanford Natural Language Inference, associative recall, and copy tasks.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (3): 805–831.
Published: 01 March 2013
FIGURES
| View All (14)
Abstract
View article
PDF
Restricted Boltzmann machines (RBMs) are often used as building blocks in greedy learning of deep networks. However, training this simple model can be laborious. Traditional learning algorithms often converge only with the right choice of metaparameters that specify, for example, learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data representation. An equivalent RBM can be obtained by flipping some bits and changing the weights and biases accordingly, but traditional learning rules are not invariant to such transformations. Without careful tuning of these training settings, traditional algorithms can easily get stuck or even diverge. In this letter, we present an enhanced gradient that is derived to be invariant to bit-flipping transformations. We experimentally show that the enhanced gradient yields more stable training of RBMs both when used with a fixed learning rate and an adaptive one.