Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-7 of 7
Lai Wan Chan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (1): 191–223.
Published: 01 January 2006
Abstract
View article
PDF
Subband decomposition ICA (SDICA), an extension of ICA, assumes that each source is represented as the sum of some independent subcomponents and dependent subcomponents, which have different frequency bands. In this article, we first investigate the feasibility of separating the SDICA mixture in an adaptive manner. Second, we develop an adaptive method for SDICA, namely band-selective ICA (BS-ICA), which finds the mixing matrix and the estimate of the source independent subcomponents. This method is based on the minimization of the mutual information between outputs. Some practical issues are discussed. For better applicability, a scheme to avoid the high-dimensional score function difference is given. Third, we investigate one form of the overcomplete ICA problems with sources having specific frequency characteristics, which BS-ICA can also be used to solve. Experimental results illustrate the success of the proposed method for solving both SDICA and the over-complete ICA problems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (2): 425–452.
Published: 01 February 2005
Abstract
View article
PDF
The linear mixture model has been investigated in most articles tackling the problem of blind source separation. Recently, several articles have addressed a more complex model: blind source separation (BSS) of post-nonlinear (PNL) mixtures. These mixtures are assumed to be generated by applying an unknown invertible nonlinear distortion to linear instantaneous mixtures of some independent sources. The gaussianization technique for BSS of PNL mixtures emerged based on the assumption that the distribution of the linear mixture of independent sources is gaussian. In this letter, we review the gaussianization method and then extend it to apply to PNL mixture in which the linear mixture is close to gaussian. Our proposed method approximates the linear mixture using the Cornish-Fisher expansion. We choose the mutual information as the independence measurement to develop a learning algorithm to separate PNL mixtures. This method provides better applicability and accuracy. We then discuss the sufficient condition for the method to be valid. The characteristics of the nonlinearity do not affect the performance of this method. With only a few parameters to tune, our algorithm has a comparatively low computation. Finally, we present experiments to illustrate the efficiency of our method.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (5): 1137–1170.
Published: 01 May 2001
Abstract
View article
PDF
Holistic parsers offer a viable alternative to traditional algorithmic parsers. They have good generalization performance and are robust inherently. In a holistic parser, parsing is achieved by mapping the connectionist representation of the input sentence to the connectionist representation of the target parse tree directly. Little prior knowledge of the underlying parsing mechanism thus needs to be assumed. However, it also makes holistic parsing difficult to understand. In this article, an analysis is presented for studying the operations of the confluent pre-order parser (CPP). In the analysis, the CPP is viewed as a dynamical system, and holistic parsing is perceived as a sequence of state transitions through its state-space. The seemingly one-shot parsing mechanism can thus be elucidated as a step-by-step inference process, with the intermediate parsing decisions being reflected by the states visited during parsing. The study serves two purposes. First, it improves our understanding of how grammatical errors are corrected by the CPP. The occurrence of an error in a sentence will cause the CPP to deviate from the normal track that is followed when the original sentence is parsed. But as the remaining terminals are read, the two trajectories will gradually converge until finally the correct parse tree is produced. Second, it reveals that having systematic parse tree representations alone cannot guarantee good generalization performance in holistic parsing. More important, they need to be distributed in certain useful locations of the representational space. Sentences with similar trailing terminals should have their corresponding parse tree representations mapped to nearby locations in the representational space. The study provides concrete evidence that encoding the linearized parse trees as obtained via preorder traversal can satisfy such a requirement.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (8): 1995–2016.
Published: 15 November 1999
Abstract
View article
PDF
Connectionist holistic parsing offers a viable and attractive alternative to traditional algorithmic parsers. With exposure to a limited subset of grammatical sentences and their corresponding parse trees only, a holistic parser is capable of learning inductively the grammatical regularity underlying the training examples that affects the parsing process. In the past, various connectionist parsers have been proposed. Each approach had its own unique characteristics, and yet some techniques were shared in common. In this article, various dimensions underlying the design of a holistic parser are explored, including the methods to encode sentences and parse trees, whether a sentence and its corresponding parse tree share the same representation, the use of confluent inference, and the inclusion of phrases in the training set. Different combinations of these design factors give rise to different holistic parsers. In succeeding discussions, we scrutinize these design techniques and compare the performances of a few parsers on language parsing, including the confluent preorder parser, the backpropagation parsing network, the XERIC parser of Berg (1992), the modular connectionist parser of Sharkey and Sharkey (1992), Reilly's (1992) model, and their derivatives. Experiments are performed to evaluate their generalization capability and robustness. The results reveal a number of issues essential for building an effective holistic parser.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (4): 965–976.
Published: 15 May 1999
Abstract
View article
PDF
Pruning a neural network to a reasonable smaller size, and if possible to give a better generalization, has long been investigated. Conventionally the common technique of pruning is based on considering error sensitivity measure, and the nature of the problem being solved is usually stationary. In this article, we present an adaptive pruning algorithm for use in a nonstationary environment. The idea relies on the use of the extended Kalman filter (EKF) training method. Since EKF is a recursive Bayesian algorithm, we define a weight-importance measure in term of the sensitivity of a posteriori probability. Making use of this new measure and the adaptive nature of EKF, we devise an adaptive pruning algorithm called adaptive Bayesian pruning . Simulation results indicate that in a noisy nonstationary environment, the proposed pruning algorithm is able to remove network redundancy adaptively and yet preserve the same generalization ability.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (6): 1481–1505.
Published: 15 August 1998
Abstract
View article
PDF
Pruning is one of the effective techniques for improving the generalization error of neural networks. Existing pruning techniques are derived mainly from the viewpoint of energy minimization, which is commonly used in gradient-based learning methods. In recurrent networks, extended Kalman filter (EKF)–based training has been shown to be superior to gradient-based learning methods in terms of speed. This article explains a pruning procedure for recurrent neural networks using EKF training. The sensitivity of a posterior probability is used as a measure of the importance of a weight instead of error sensitivity since posterior probability density is readily obtained from this training method. The pruning procedure is tested using three problems: (1) the prediction of a simple linear time series, (2) the identification of a nonlinear system, and (3) the prediction of an exchange-rate time series. Simulation results demonstrate that the proposed pruning method is able to reduce the number of parameters and improve the generalization ability of a recurrent network.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (2): 385–401.
Published: 15 February 1997
Abstract
View article
PDF
Forgetting learning is an incremental learning rule in associative memories. With it, the recent learning items can be encoded, and the old learning items will be forgotten. In this article, we analyze the storage behavior of bidirectional associative memory (BAM) under the forgetting learning. That is, “Can the most recent k learning item be stored as a fixed point?” Also, we discuss how to choose the forgetting constant in the forgetting learning such that the BAM can correctly store as many as possible of the most recent learning items. Simulation is provided to verify the theoretical analysis.