Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Lars Gislén
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (6): 805–831.
Published: 01 November 1992
Abstract
View article
PDF
In a recent paper (Gislén et al. 1989) a convenient encoding and an efficient mean field algorithm for solving scheduling problems using a Potts neural network was developed and numerically explored on simplified and synthetic problems. In this work the approach is extended to realistic applications both with respect to problem complexity and size. This extension requires among other things the interaction of Potts neurons with different number of components. We analyze the corresponding linearized mean field equations with respect to estimating the phase transition temperature. Also a brief comparison with the linear programming approach is given. Testbeds consisting of generated problems within the Swedish high school system are solved efficiently with high quality solutions as results.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (5): 737–745.
Published: 01 September 1992
Abstract
View article
PDF
Rotor neurons are introduced to encode states living on the surface of a sphere in D dimensions. Such rotors can be regarded as continuous generalizations of binary (Ising) neurons. The corresponding mean field equations are derived, and phase transition properties based on linearized dynamics are given. The power of this approach is illustrated with an optimization problem—placing N identical charges on a sphere such that the overall repulsive energy is minimized. The rotor approach appears superior to other methods for this problem both with respect to solution quality and computational effort needed.