Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Lawrence Sirovich
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (7): 1675–1703.
Published: 01 July 2011
FIGURES
| View All (8)
Abstract
View article
PDF
We derive a model of a neuron’s interspike interval probability density through analysis of the first passage problem. The fit of our expression to retinal ganglion cell laboratory data extracts three physiologically relevant parameters, with which our model yields input-output features that conform to laboratory results. Preliminary analysis suggests that under common circumstances, local circuitry readjusts these parameters with changes in firing rate and so endeavors to faithfully replicate an input signal. Further results suggest that the so-called principle of sloppy workmanship also plays a role in evolution’s choice of these parameters.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (5): 1179–1210.
Published: 01 May 2008
Abstract
View article
PDF
A mathematical model, of general character for the dynamic description of coupled neural oscillators is presented. The population approach that is employed applies equally to coupled cells as to populations of such coupled cells. The formulation includes stochasticity and preserves details of precisely firing neurons. Based on the generally accepted view of cortical wiring, this formulation is applied to the retinal ganglion cell (RGC)/lateral geniculate nucleus (LGN) relay cell system, of the early mammalian visual system. The smallness of quantal voltage jumps at the retinal level permits a Fokker-Planck approximation for the RGC contribution; however, the LGN description requires the use of finite jumps, which for fast synaptic dynamics appears as finite jumps in the membrane potential. Analyses of equilibrium spiking behavior for both the deterministic and stochastic cases are presented. Green's function methods form the basis for the asymptotic and exact results that are presented. This determines the spiking ratio (i.e., the number of RGC arrivals per LGN spike), which is the reciprocal of the transfer ratio, under wide circumstances. Criteria for spiking regimes, in terms of the relatively few parameters of the model, are presented. Under reasonable hypotheses, it is shown that the transfer ratio is ≤1/2, in the absence of input from other areas. Thus, the model suggests that the LGN/RGC system may be a relatively unsophisticated spike editor. In the absence of other input, the system is designed to fire an LGN spike only when two or more RGC spikes appear in a relatively short time. Transfer ratios that briefly exceed 1/2 (but are less than 1) have been recorded in the laboratory. Inclusion of brain stem input has been shown to provide a signal that elevates the transfer ratio (Ozaki & Kaplan, 2006). A model that includes this contribution is also presented.