Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Leo Breiman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1493–1517.
Published: 01 October 1999
Abstract
View article
PDF
The theory behind the success of adaptive reweighting and combining algorithms (arcing) such as Adaboost (Freund & Schapire, 1996a, 1997) and others in reducing generalization error has not been well understood. By formulating prediction as a game where one player makes a selection from instances in the training set and the other a convex linear combination of predictors from a finite set, existing arcing algorithms are shown to be algorithms for finding good game strategies. The minimax theorem is an essential ingredient of the convergence proofs. An arcing algorithm is described that converges to the optimal strategy. A bound on the generalization error for the combined predictors in terms of their maximum error is proven that is sharper than bounds to date. Schapire, Freund, Bartlett, and Lee (1997) offered an explanation of why Adaboost works in terms of its ability to produce generally high margins. The empirical comparison of Adaboost to the optimal arcing algorithm shows that their explanation is not complete.