Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Li Jihong
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (1): 208–235.
Published: 01 January 2014
FIGURES
| View All (15)
Abstract
View article
PDF
In the research of machine learning algorithms for classification tasks, the comparison of the performances of algorithms is extremely important, and a statistical test of significance for generalization error is often used to perform it in the machine learning literature. In view of the randomness of partitions in cross-validation, a new blocked 3×2 cross-validation is proposed to estimate generalization error in this letter. We then conduct an analysis of variance of the blocked 3×2 cross-validated estimator. A relatively conservative variance estimator that considers the correlation between any two two-fold cross-validations, and was previously neglected in 5×2 cross-validated t and F -tests is put forward. A corresponding test using this variance estimator is presented to compare the performances of algorithms. Simulated results show that the performance of our test is comparable with that of 5×2 cross-validated tests but with less computation complexity.