Skip Nav Destination

*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*
*PDF*

Update search

### NARROW

Format

Journal

TocHeadingTitle

Date

Availability

1-12 of 12

Liam Paninski

Close
**Follow your search**

Access your saved searches in your account

Would you like to receive an alert when new items match your search?

*Close Modal*

Sort by

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2021) 33 (7): 1719–1750.

Published: 11 June 2021

FIGURES
| View All (6)

Abstract

View article
Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2014) 26 (12): 2790–2797.

Published: 01 December 2014

FIGURES
| View All (22)

Abstract

View article
Parametric models of the conditional intensity of a point process (e.g., generalized linear models) are popular in statistical neuroscience, as they allow us to characterize the variability in neural responses in terms of stimuli and spiking history. Parameter estimation in these models relies heavily on accurate evaluations of the log likelihood and its derivatives. Classical approaches use a discretized time version of the spiking process, and recent work has exploited the existence of a refractory period (during which the conditional intensity is zero following a spike) to obtain more accurate estimates of the likelihood. In this brief letter, we demonstrate that this method can be improved significantly by applying classical quadrature methods directly to the resulting continuous-time integral.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2011) 23 (5): 1071–1132.

Published: 01 May 2011

FIGURES
| View All (10)

Abstract

View article
Given recent experimental results suggesting that neural circuits may evolve through multiple firing states, we develop a framework for estimating state-dependent neural response properties from spike train data. We modify the traditional hidden Markov model (HMM) framework to incorporate stimulus-driven, non-Poisson point-process observations. For maximal flexibility, we allow external, time-varying stimuli and the neurons’ own spike histories to drive both the spiking behavior in each state and the transitioning behavior between states. We employ an appropriately modified expectation-maximization algorithm to estimate the model parameters. The expectation step is solved by the standard forward-backward algorithm for HMMs. The maximization step reduces to a set of separable concave optimization problems if the model is restricted slightly. We first test our algorithm on simulated data and are able to fully recover the parameters used to generate the data and accurately recapitulate the sequence of hidden states. We then apply our algorithm to a recently published data set in which the observed neuronal ensembles displayed multistate behavior and show that inclusion of spike history information significantly improves the fit of the model. Additionally, we show that a simple reformulation of the state space of the underlying Markov chain allows us to implement a hybrid half-multistate, half-histogram model that may be more appropriate for capturing the complexity of certain data sets than either a simple HMM or a simple peristimulus time histogram model alone.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2011) 23 (1): 1–45.

Published: 01 January 2011

FIGURES
| View All (32)

Abstract

View article
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

**Includes:**Supplementary data

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2011) 23 (1): 46–96.

Published: 01 January 2011

FIGURES
| View All (29)

Abstract

View article
Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We discuss Bayesian decoding methods based on an encoding generalized linear model (GLM) that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The form of the GLM likelihood ensures that the posterior distribution over the stimuli that caused an observed set of spike trains is log concave so long as the prior is. This allows the maximum a posteriori (MAP) stimulus estimate to be obtained using efficient optimization algorithms. Unfortunately, the MAP estimate can have a relatively large average error when the posterior is highly nongaussian. Here we compare several Markov chain Monte Carlo (MCMC) algorithms that allow for the calculation of general Bayesian estimators involving posterior expectations (conditional on model parameters). An efficient version of the hybrid Monte Carlo (HMC) algorithm was significantly superior to other MCMC methods for gaussian priors. When the prior distribution has sharp edges and corners, on the other hand, the “hit-and-run” algorithm performed better than other MCMC methods. Using these algorithms, we show that for this latter class of priors, the posterior mean estimate can have a considerably lower average error than MAP, whereas for gaussian priors, the two estimators have roughly equal efficiency. We also address the application of MCMC methods for extracting nonmarginal properties of the posterior distribution. For example, by using MCMC to calculate the mutual information between the stimulus and response, we verify the validity of a computationally efficient Laplace approximation to this quantity for gaussian priors in a wide range of model parameters; this makes direct model-based computation of the mutual information tractable even in the case of large observed neural populations, where methods based on binning the spike train fail. Finally, we consider the effect of uncertainty in the GLM parameters on the posterior estimators.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2009) 21 (7): 1863–1912.

Published: 01 July 2009

FIGURES
| View All (8)

Abstract

View article
Signal-to-noise ratios in physical systems can be significantly degraded if the outputs of the systems are highly variable. Biological processes for which highly stereotyped signal generations are necessary features appear to have reduced their signal variabilities by employing multiple processing steps. To better understand why this multistep cascade structure might be desirable, we prove that the reliability of a signal generated by a multistate system with no memory (i.e., a Markov chain) is maximal if and only if the system topology is such that the process steps irreversibly through each state, with transition rates chosen such that an equal fraction of the total signal is generated in each state. Furthermore, our result indicates that by increasing the number of states, it is possible to arbitrarily increase the reliability of the system. In a physical system, however, an energy cost is associated with maintaining irreversible transitions, and this cost increases with the number of such transitions (i.e., the number of states). Thus, an infinite-length chain, which would be perfectly reliable, is infeasible. To model the effects of energy demands on the maximally reliable solution, we numerically optimize the topology under two distinct energy functions that penalize either irreversible transitions or incommunicability between states, respectively. In both cases, the solutions are essentially irreversible linear chains, but with upper bounds on the number of states set by the amount of available energy. We therefore conclude that a physical system for which signal reliability is important should employ a linear architecture, with the number of states (and thus the reliability) determined by the intrinsic energy constraints of the system.

**Includes:**Supplementary data

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2009) 21 (5): 1203–1243.

Published: 01 May 2009

FIGURES

Abstract

View article
There has recently been a great deal of interest in inferring network connectivity from the spike trains in populations of neurons. One class of useful models that can be fit easily to spiking data is based on generalized linear point process models from statistics. Once the parameters for these models are fit, the analyst is left with a nonlinear spiking network model with delays, which in general may be very difficult to understand analytically. Here we develop mean-field methods for approximating the stimulus-driven firing rates (in both the time-varying and steady-state cases), auto- and cross-correlations, and stimulus-dependent filtering properties of these networks. These approximations are valid when the contributions of individual network coupling terms are small and, hence, the total input to a neuron is approximately gaussian. These approximations lead to deterministic ordinary differential equations that are much easier to solve and analyze than direct Monte Carlo simulation of the network activity. These approximations also provide an analytical way to evaluate the linear input-output filter of neurons and how the filters are modulated by network interactions and some stimulus feature. Finally, in the case of strong refractory effects, the mean-field approximations in the generalized linear model become inaccurate; therefore, we introduce a model that captures strong refractoriness, retains all of the easy fitting properties of the standard generalized linear model, and leads to much more accurate approximations of mean firing rates and cross-correlations that retain fine temporal behaviors.

**Includes:**Supplementary data

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2009) 21 (3): 619–687.

Published: 01 March 2009

FIGURES
| View All (15)

Abstract

View article
Adaptively optimizing experiments has the potential to significantly reduce the number of trials needed to build parametric statistical models of neural systems. However, application of adaptive methods to neurophysiology has been limited by severe computational challenges. Since most neurons are high-dimensional systems, optimizing neurophysiology experiments requires computing high-dimensional integrations and optimizations in real time. Here we present a fast algorithm for choosing the most informative stimulus by maximizing the mutual information between the data and the unknown parameters of a generalized linear model (GLM) that we want to fit to the neuron's activity. We rely on important log concavity and asymptotic normality properties of the posterior to facilitate the required computations. Our algorithm requires only low-rank matrix manipulations and a two-dimensional search to choose the optimal stimulus. The average running time of these operations scales quadratically with the dimensionality of the GLM, making real-time adaptive experimental design feasible even for high-dimensional stimulus and parameter spaces. For example, we require roughly 10 milliseconds on a desktop computer to optimize a 100-dimensional stimulus. Despite using some approximations to make the algorithm efficient, our algorithm asymptotically decreases the uncertainty about the model parameters at a rate equal to the maximum rate predicted by an asymptotic analysis. Simulation results show that picking stimuli by maximizing the mutual information can speed up convergence to the optimal values of the parameters by an order of magnitude compared to using random (nonadaptive) stimuli. Finally, applying our design procedure to real neurophysiology experiments requires addressing the nonstationarities that we would expect to see in neural responses; our algorithm can efficiently handle both fast adaptation due to spike history effects and slow, nonsystematic drifts in a neuron's activity.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2006) 18 (11): 2592–2616.

Published: 01 November 2006

Abstract

View article
We compute the exact spike-triggered average (STA) of the voltage for the nonleaky integrate-and-fire (IF) cell in continuous time, driven by gaussian white noise. The computation is based on techniques from the theory of renewal processes and continuous-time hidden Markov processes (e.g., the backward and forward Fokker-Planck partial differential equations associated with first-passage time densities). From the STA voltage, it is straightforward to derive the STA input current. The theory also gives an explicit asymptotic approximation for the STA of the leaky IF cell, valid in the low-noise regime σ → 0. We consider both the STA and the conditional average voltage given an observed spike “doublet” event, that is, two spikes separated by some fixed period of silence. In each case, we find that the STA as a function of time-preceding-spike, τ, has a square root singularity as τ approaches zero from below and scales linearly with the scale of injected noise current. We close by briefly examining the discrete-time case, where similar phenomena are observed.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2005) 17 (7): 1480–1507.

Published: 01 July 2005

Abstract

View article
We discuss an idea for collecting data in a relatively efficient manner. Our point of view is Bayesian and information-theoretic: on any given trial, we want to adaptively choose the input in such a way that the mutual information between the (unknown) state of the system and the (stochastic) output is maximal, given any prior information (including data collected on any previous trials). We prove a theorem that quantifies the effectiveness of this strategy and give a few illustrative examples comparing the performance of this adaptive technique to that of the more usual nonadaptive experimental design. In particular, we calculate the asymptotic efficiency of the information-maximization strategy and demonstrate that this method is in a well-defined sense never less efficient—and is generically more efficient—than the nonadaptive strategy. For example, we are able to explicitly calculate the asymptotic relative efficiency of the staircase method widely employed in psychophysics research and to demonstrate the dependence of this efficiency on the form of the psychometric function underlying the output responses.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2004) 16 (12): 2533–2561.

Published: 01 December 2004

Abstract

View article
We examine a cascade encoding model for neural response in which a linear filtering stage is followed by a noisy, leaky, integrate-and-fire spike generation mechanism. This model provides a biophysically more realistic alternative to models based on Poisson (memoryless) spike generation, and can effectively reproduce a variety of spiking behaviors seen in vivo. We describe the maximum likelihood estimator for the model parameters, given only extracellular spike train responses (not intracellular voltage data). Specifically, we prove that the log-likelihood function is concave and thus has an essentially unique global maximum that can be found using gradient ascent techniques. We develop an efficient algorithm for computing the maximum likelihood solution, demonstrate the effectiveness of the resulting estimator with numerical simulations, and discuss a method of testing the model's validity using time-rescaling and density evolution techniques.

Journal Articles

Publisher: Journals Gateway

*Neural Computation*(2003) 15 (6): 1191–1253.

Published: 01 June 2003

Abstract

View article
We present some new results on the nonparametric estimation of entropy and mutual information. First, we use an exact local expansion of the entropy function to prove almost sure consistency and central limit theorems for three of the most commonly used discretized information estimators. The setup is related to Grenander's method of sieves and places no assumptions on the underlying probability measure generating the data. Second, we prove a converse to these consistency theorems, demonstrating that a misapplication of the most common estimation techniques leads to an arbitrarily poor estimate of the true information, even given unlimited data. This “inconsistency” theorem leads to an analytical approximation of the bias, valid in surprisingly small sample regimes and more accurate than the usual formula of Miller and Madow over a large region of parameter space. The two most practical implications of these results are negative: (1) information estimates in a certain data regime are likely contaminated by bias, even if “bias-corrected” estimators are used, and (2) confidence intervals calculated by standard techniques drastically underestimate the error of the most common estimation methods. Finally, we note a very useful connection between the bias of entropy estimators and a certain polynomial approximation problem. By casting bias calculation problems in this approximation theory framework, we obtain the best possible generalization of known asymptotic bias results. More interesting, this framework leads to an estimator with some nice properties: the estimator comes equipped with rigorous bounds on the maximum error over all possible underlying probability distributions, and this maximum error turns out to be surprisingly small. We demonstrate the application of this new estimator on both real and simulated data.