Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Linjun Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (4): 991–1018.
Published: 23 March 2022
Abstract
View article
PDF
Representations of the world environment play a crucial role in artificial intelligence. It is often inefficient to conduct reasoning and inference directly in the space of raw sensory representations, such as pixel values of images. Representation learning allows us to automatically discover suitable representations from raw sensory data. For example, given raw sensory data, a deep neural network learns nonlinear representations at its hidden layers, which are subsequently used for classification (or regression) at its output layer. This happens implicitly during training through minimizing a supervised or unsupervised loss. In this letter, we study the dynamics of such implicit nonlinear representation learning. We identify a pair of a new assumption and a novel condition, called the on-model structure assumption and the data architecture alignment condition . Under the on-model structure assumption, the data architecture alignment condition is shown to be sufficient for the global convergence and necessary for global optimality. Moreover, our theory explains how and when increasing network size does and does not improve the training behaviors in the practical regime. Our results provide practical guidance for designing a model structure; for example, the on-model structure assumption can be used as a justification for using a particular model structure instead of others. As an application, we then derive a new training framework, which satisfies the data architecture alignment condition without assuming it by automatically modifying any given training algorithm dependent on data and architecture. Given a standard training algorithm, the framework running its modified version is empirically shown to maintain competitive (practical) test performances while providing global convergence guarantees for deep residual neural networks with convolutions, skip connections, and batch normalization with standard benchmark data sets, including MNIST, CIFAR-10, CIFAR-100, Semeion, KMNIST, and SVHN.
Includes: Supplementary data