Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Linqiang Pan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (12): 2925–2943.
Published: 01 December 2014
FIGURES
Abstract
View article
PDF
Spiking neural P systems (SN P systems) are a class of distributed parallel computing devices inspired by spiking neurons, where the spiking rules are usually used in a sequential way (an applicable rule is applied one time at a step) or an exhaustive way (an applicable rule is applied as many times as possible at a step). In this letter, we consider a generalized way of using spiking rules by “combining” the sequential way and the exhaustive way: if a rule is used at some step, then at that step, it can be applied any possible number of times, nondeterministically chosen. The computational power of SN P systems with a generalized use of rules is investigated. Specifically, we prove that SN P systems with a generalized use of rules consisting of one neuron can characterize finite sets of numbers. If the systems consist of two neurons, then the computational power of such systems can be greatly improved, but not beyond generating semilinear sets of numbers. SN P systems with a generalized use of rules consisting of three neurons are proved to generate at least a non-semilinear set of numbers. In the case of allowing enough neurons, SN P systems with a generalized use of rules are computationally complete. These results show that the number of neurons is crucial for SN P systems with a generalized use of rules to achieve a desired computational power.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (7): 1340–1361.
Published: 01 July 2014
FIGURES
| View All (14)
Abstract
View article
PDF
Spiking neural P systems with weights are a new class of distributed and parallel computing models inspired by spiking neurons. In such models, a neuron fires when its potential equals a given value (called a threshold). In this work, spiking neural P systems with thresholds (SNPT systems) are introduced, where a neuron fires not only when its potential equals the threshold but also when its potential is higher than the threshold. Two types of SNPT systems are investigated. In the first one, we consider that the firing of a neuron consumes part of the potential (the amount of potential consumed depends on the rule to be applied). In the second one, once a neuron fires, its potential vanishes (i.e., it is reset to zero). The computation power of the two types of SNPT systems is investigated. We prove that the systems of the former type can compute all Turing computable sets of numbers and the systems of the latter type characterize the family of semilinear sets of numbers. The results show that the firing mechanism of neurons has a crucial influence on the computation power of the SNPT systems, which also answers an open problem formulated in Wang, Hoogeboom, Pan, Păun, and Pérez-Jiménez ( 2010 ).
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (5): 974–997.
Published: 01 May 2014
FIGURES
| View All (15)
Abstract
View article
PDF
Spiking neural P systems (SN P systems) are a class of distributed parallel computing devices inspired by the way neurons communicate by means of spikes; neurons work in parallel in the sense that each neuron that can fire should fire, but the work in each neuron is sequential in the sense that at most one rule can be applied at each computation step. In this work, with biological inspiration, we consider SN P systems with the restriction that at each step, one of the neurons (i.e., sequential mode) or all neurons (i.e., pseudo-sequential mode) with the maximum (or minimum) number of spikes among the neurons that are active (can spike) will fire. If an active neuron has more than one enabled rule, it nondeterministically chooses one of the enabled rules to be applied, and the chosen rule is applied in an exhaustive manner (a kind of local parallelism): the rule is used as many times as possible. This strategy makes the system sequential or pseudo-sequential from the global view of the whole network and locally parallel at the level of neurons. We obtain four types of SN P systems: maximum/minimum spike number induced sequential/pseudo-sequential SN P systems with exhaustive use of rules. We prove that SN P systems of these four types are all Turing universal as number-generating computation devices. These results illustrate that the restriction of sequentiality may have little effect on the computation power of SN P systems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (3): 805–825.
Published: 01 March 2012
FIGURES
Abstract
View article
PDF
In a biological nervous system, astrocytes play an important role in the functioning and interaction of neurons, and astrocytes have excitatory and inhibitory influence on synapses. In this work, with this biological inspiration, a class of computation devices that consist of neurons and astrocytes is introduced, called spiking neural P systems with astrocytes (SNPA systems). The computation power of SNPA systems is investigated. It is proved that SNPA systems with simple neurons (all neurons have the same rule, one per neuron, of a very simple form) are Turing universal in both generative and accepting modes. If a bound is given on the number of spikes present in any neuron along a computation, then the computation power of SNPA systems is diminished. In this case, a characterization of semilinear sets of numbers is obtained.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (5): 1320–1342.
Published: 01 May 2011
FIGURES
| View All (11)
Abstract
View article
PDF
Different biological processes take different times to be completed, which can also be influenced by many environmental factors. In this work, a realistic definition of nonsynchronized spiking neural P systems (SN P systems, for short) is considered: during the work of an SN P system, the execution times of spiking rules cannot be known exactly (i.e., they are arbitrary). In order to establish robust systems against the environmental factors, a special class of SN P systems, called time-free SN P systems, is introduced, which always produce the same computation result independent of the execution times of the rules. The universality of time-free SN P systems is investigated. It is proved that these P systems with extended rules (several spikes can be produced by a rule) are equivalent to register machines. However, if the number of spikes present in the system is bounded, then the power of time-free SN P systems falls, and in this case, a characterization of semilinear sets of natural numbers is obtained.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (10): 2615–2646.
Published: 01 October 2010
FIGURES
| View All (16)
Abstract
View article
PDF
A variant of spiking neural P systems with positive or negative weights on synapses is introduced, where the rules of a neuron fire when the potential of that neuron equals a given value. The involved values—weights, firing thresholds, potential consumed by each rule—can be real (computable) numbers, rational numbers, integers, and natural numbers. The power of the obtained systems is investigated. For instance, it is proved that integers (very restricted: 1, −1 for weights, 1 and 2 for firing thresholds, and as parameters in the rules) suffice for computing all Turing computable sets of numbers in both the generative and the accepting modes. When only natural numbers are used, a characterization of the family of semilinear sets of numbers is obtained. It is shown that spiking neural P systems with weights can efficiently solve computationally hard problems in a nondeterministic way. Some open problems and suggestions for further research are formulated.