Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Lucas Parra
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (2): 260–269.
Published: 15 February 1996
Abstract
View article
PDF
According to Barlow (1989), feature extraction can be understood as finding a statistically independent representation of the probability distribution underlying the measured signals. The search for a statistically independent representation can be formulated by the criterion of minimal mutual information, which reduces to decorrelation in the case of gaussian distributions. If nongaussian distributions are to be considered, minimal mutual information is the appropriate generalization of decorrelation as used in linear Principal Component Analyses (PCA). We also generalize to nonlinear transformations by only demanding perfect transmission of information. This leads to a general class of nonlinear transformations, namely symplectic maps. Conservation of information allows us to consider only the statistics of single coordinates. The resulting factorial representation of the joint probability distribution gives a density estimation. We apply this concept to the real world problem of electrical motor fault detection treated as a novelty detection task.