Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
M. A. Parvez Mahmud
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (6): 1289–1328.
Published: 19 May 2022
Abstract
View article
PDF
Artificial neural networks (ANNs) have experienced a rapid advancement for their success in various application domains, including autonomous driving and drone vision. Researchers have been improving the performance efficiency and computational requirement of ANNs inspired by the mechanisms of the biological brain. Spiking neural networks (SNNs) provide a power-efficient and brain-inspired computing paradigm for machine learning applications. However, evaluating large-scale SNNs on classical von Neumann architectures (central processing units/graphics processing units) demands a high amount of power and time. Therefore, hardware designers have developed neuromorphic platforms to execute SNNs in and approach that combines fast processing and low power consumption. Recently, field-programmable gate arrays (FPGAs) have been considered promising candidates for implementing neuromorphic solutions due to their varied advantages, such as higher flexibility, shorter design, and excellent stability. This review aims to describe recent advances in SNNs and the neuromorphic hardware platforms (digital, analog, hybrid, and FPGA based) suitable for their implementation. We present that biological background of SNN learning, such as neuron models and information encoding techniques, followed by a categorization of SNN training. In addition, we describe state-of-the-art SNN simulators. Furthermore, we review and present FPGA-based hardware implementation of SNNs. Finally, we discuss some future directions for research in this field.