Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
M. W. Spratling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (1): 60–103.
Published: 01 January 2012
FIGURES
| View All (16)
Abstract
View article
PDF
A method is presented for learning the reciprocal feedforward and feedback connections required by the predictive coding model of cortical function. When this method is used, feedforward and feedback connections are learned simultaneously and independently in a biologically plausible manner. The performance of the proposed algorithm is evaluated by applying it to learning the elementary components of artificial and natural images. For artificial images, the bars problem is employed, and the proposed algorithm is shown to produce state-of-the-art performance on this task. For natural images, components resembling Gabor functions are learned in the first processing stage, and neurons responsive to corners are learned in the second processing stage. The properties of these learned representations are in good agreement with neurophysiological data from V1 and V2. The proposed algorithm demonstrates for the first time that a single computational theory can explain the formation of cortical RFs and also the response properties of cortical neurons once those RFs have been learned.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (9): 2157–2179.
Published: 01 September 2002
Abstract
View article
PDF
A large and influential class of neural network architectures uses postintegration lateral inhibition as a mechanism for competition. We argue that these algorithms are computationally deficient in that they fail to generate, or learn, appropriate perceptual representations under certain circumstances. An alternative neural network architecture is presented here in which nodes compete for the right to receive inputs rather than for the right to generate outputs. This form of competition, implemented through preintegration lateral inhibition, does provide appropriate coding properties and can be used to learn such representations efficiently. Furthermore, this architecture is consistent with both neuroanatomical and neurophysiological data. We thus argue that preintegration lateral inhibition has computational advantages over conventional neural network architectures while remaining equally biologically plausible.