Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Marco Cuturi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (5): 827–848.
Published: 01 May 2019
FIGURES
| View All (6)
Abstract
View article
PDF
We propose a new divergence on the manifold of probability distributions, building on the entropic regularization of optimal transportation problems. As Cuturi ( 2013 ) showed, regularizing the optimal transport problem with an entropic term is known to bring several computational benefits. However, because of that regularization, the resulting approximation of the optimal transport cost does not define a proper distance or divergence between probability distributions. We recently tried to introduce a family of divergences connecting the Wasserstein distance and the Kullback-Leibler divergence from an information geometry point of view (see Amari, Karakida, & Oizumi, 2018 ). However, that proposal was not able to retain key intuitive aspects of the Wasserstein geometry, such as translation invariance, which plays a key role when used in the more general problem of computing optimal transport barycenters. The divergence we propose in this work is able to retain such properties and admits an intuitive interpretation.