Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Marco Saerens
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (8): 2363–2404.
Published: 01 August 2009
FIGURES
| View All (7)
Abstract
View article
PDF
This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost—nothing particular up to now—you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy—minimizing the expected routing cost—are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (1): 21–41.
Published: 01 January 2002
Abstract
View article
PDF
It sometimes happens (for instance in case control studies) that a classifier is trained on a data set that does not reflect the true a priori probabilities of the target classes on real-world data. This may have a negative effect on the classification accuracy obtained on the real-world data set, especially when the classifier's decisions are based on the a posteriori probabilities of class membership. Indeed, in this case, the trained classifier provides estimates of the a posteriori probabilities that are not valid for this real-world data set (they rely on the a priori probabilities of the training set). Applying the classifier as is (without correcting its outputs with respect to these new conditions) on this new data set may thus be suboptimal. In this note, we present a simple iterative procedure for adjusting the outputs of the trained classifier with respect to these new a priori probabilities without having to refit the model, even when these probabilities are not known in advance. As a by-product, estimates of the new a priori probabilities are also obtained. This iterative algorithm is a straightforward instance of the expectation-maximization (EM) algorithm and is shown to maximize the likelihood of the new data. Thereafter, we discuss a statistical test that can be applied to decide if the a priori class probabilities have changed from the training set to the real-world data. The procedure is illustrated on different classification problems involving a multilayer neural network, and comparisons with a standard procedure for a priori probability estimation are provided. Our original method, based on the EM algorithm, is shown to be superior to the standard one for a priori probability estimation. Experimental results also indicate that the classifier with adjusted outputs always performs better than the original one in terms of classification accuracy, when the a priori probability conditions differ from the training set to the real-world data. The gain in classification accuracy can be significant.