Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Margaret E. Sereno
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (9): 2235–2264.
Published: 01 September 2013
FIGURES
| View All (18)
Abstract
View article
PDF
Current population coding methods, including weighted averaging and Bayesian estimation, are based on extrinsic representations. These require that neurons be labeled with response parameters, such as tuning curve peaks or noise distributions, which are tied to some external, world-based metric scale. Firing rates alone, without this external labeling, are insufficient to represent a variable. However, the extrinsic approach does not explain how such neural labeling is implemented. A radically different and perhaps more physiological approach is based on intrinsic representations, which have access only to firing rates. Because neurons are unlabeled, intrinsic coding represents relative, rather than absolute, values of a variable. We show that intrinsic coding has representational advantages, including invariance, categorization, and discrimination, and in certain situations it may also recover absolute stimulus values.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1993) 5 (4): 597–612.
Published: 01 July 1993
Abstract
View article
PDF
We previously demonstrated that it is possible to learn position-independent responses to rotation and dilation by filtering rotations and dilations with different centers through an input layer with MT-like speed and direction tuning curves and connecting them to an MST-like layer with simple Hebbian synapses (Sereno and Sereno 1991). By analyzing an idealized version of the network with broader, sinusoidal direction-tuning and linear speed-tuning, we show analytically that a Hebb rule trained with arbitrary rotation, dilation/contraction, and translation velocity fields yields units with weight fields that are a rotation plus a dilation or contraction field, and whose responses to a rotating or dilating/contracting disk are exactly position independent. Differences between the performance of this idealized model and our original model (and real MST neurons) are discussed.