Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Marino Pagan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (11): 2291–2319.
Published: 01 November 2016
FIGURES
| View All (13)
Abstract
View article
PDF
Linear-nonlinear (LN) models and their extensions have proven successful in describing transformations from stimuli to spiking responses of neurons in early stages of sensory hierarchies. Neural responses at later stages are highly nonlinear and have generally been better characterized in terms of their decoding performance on prespecified tasks. Here we develop a biologically plausible decoding model for classification tasks, that we refer to as neural quadratic discriminant analysis (nQDA). Specifically, we reformulate an optimal quadratic classifier as an LN-LN computation, analogous to “subunit” encoding models that have been used to describe responses in retina and primary visual cortex. We propose a physiological mechanism by which the parameters of the nQDA classifier could be optimized, using a supervised variant of a Hebbian learning rule. As an example of its applicability, we show that nQDA provides a better account than many comparable alternatives for the transformation between neural representations in two high-level brain areas recorded as monkeys performed a visual delayed-match-to-sample task