Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Marius Buibas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (1): 183–214.
Published: 01 January 2011
FIGURES
| View All (10)
Abstract
View article
PDF
We introduce a framework for simulating signal propagation in geometric networks (networks that can be mapped to geometric graphs in some space) and developing algorithms that estimate (i.e., map) the state and functional topology of complex dynamic geometric networks. Within the framework, we define the key features typically present in such networks and of particular relevance to biological cellular neural networks: dynamics, signaling, observation, and control. The framework is particularly well suited for estimating functional connectivity in cellular neural networks from experimentally observable data and has been implemented using graphics processing unit high-performance computing. Computationally, the framework can simulate cellular network signaling close to or faster than real time. We further propose a standard test set of networks to measure performance and compare different mapping algorithms.