Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Mark D. McDonnell
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (1): 74–103.
Published: 01 January 2015
FIGURES
| View All (49)
Abstract
View articletitled, Dynamics of Gamma Bursts in Local Field Potentials
View
PDF
for article titled, Dynamics of Gamma Bursts in Local Field Potentials
In this letter, we provide a stochastic analysis of, and supporting simulation data for, a stochastic model of the generation of gamma bursts in local field potential (LFP) recordings by interacting populations of excitatory and inhibitory neurons. Our interest is in behavior near a fixed point of the stochastic dynamics of the model. We apply a recent limit theorem of stochastic dynamics to probe into details of this local behavior, obtaining several new results. We show that the stochastic model can be written in terms of a rotation multiplied by a two-dimensional standard Ornstein-Uhlenbeck (OU) process. Viewing the rewritten process in terms of phase and amplitude processes, we are able to proceed further in analysis. We demonstrate that gamma bursts arise in the model as excursions of the modulus of the OU process. The associated pair of stochastic phase and amplitude processes satisfies their own pair of stochastic differential equations, which indicates that large phase slips occur between gamma bursts. This behavior is mirrored in LFP data simulated from the original model. These results suggest that the rewritten model is a valid representation of the behavior near the fixed point for a wide class of models of oscillatory neural processes.