Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Markus Weber
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (3): 677–689.
Published: 01 March 2001
Abstract
View article
PDF
We introduce a novel way of performing independent component analysis using a constrained version of the expectation-maximization (EM) algorithm. The source distributions are modeled as D one-dimensional mixtures of gaussians. The observed data are modeled as linear mixtures of the sources with additive, isotropic noise. This generative model is fit to the data using constrained EM. The simpler “soft-switching” approach is introduced, which uses only one parameter to decide on the sub- or supergaussian nature of the sources. We explain how our approach relates to independent factor analysis.