Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Marta García-Sanchez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (8): 1601–1640.
Published: 01 August 2004
Abstract
View article
PDF
We propose a theoretical framework for odor classification in the olfactory system of insects. The classification task is accomplished in two steps. The first is a transformation from the antennal lobe to the intrinsic Kenyon cells in the mushroom body. This transformation into a higher-dimensional space is an injective function and can be implemented without any type of learning at the synaptic connections. In the second step, the encoded odors in the intrinsic Kenyon cells are linearly classified in the mushroom body lobes. The neurons that perform this linear classification are equivalent to hyperplanes whose connections are tuned by local Hebbian learning and by competition due to mutual inhibition. We calculate the range of values of activity and size fo the network required to achieve efficient classification within this scheme in insect olfaction. We are able to demonstrate that biologically plausible control mechanisms can accomplish efficient classification of odors.