Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Martin Holeňa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (11): 2813–2853.
Published: 01 November 2006
Abstract
View article
PDF
This article addresses the topic of extracting logical rules from data by means of artificial neural networks. The approach based on piecewise linear neural networks is revisited, which has already been used for the extraction of Boolean rules in the past, and it is shown that this approach can be important also for the extraction of fuzzy rules. Two important theoretical properties of piecewise-linear neural networks are proved, allowing an elaboration of the basic ideas of the approach into several variants of an algorithm for the extraction of Boolean rules. That algorithm has already been used in two real-world applications. Finally, a connection to the extraction of rules of the Łukasiewicz logic is established, relying on recent results about rational McNaughton functions. Based on one of the constructive proofs of the McNaughton theorem, an algorithm is formulated that in principle allows extracting a particular kind of formulas of the Łukasiewicz predicate logic from piecewise-linear neural networks trained with rational data.