Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Martin Lagerholm
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (6): 1587–1599.
Published: 15 August 1998
Abstract
View article
PDF
A feedback neural network approach to communication routing problems is developed, with emphasis on multiple shortest path problems, with several requests for transmissions between distinct start and end nodes. The basic ingredients are a set of Potts neurons for each request, with interactions designed to minimize path lengths and prevent overloading of network arcs. The topological nature of the problem is conveniently handled using a propagator matrix approach. Although the constraints are global, the algorithmic steps are based entirely on local information, facilitating distributed implementations. In the polynomially solvable single-request case, the approach reduces to a fuzzy version of the Bellman-Ford algorithm. The method is evaluated for synthetic problems of varying sizes and load levels, by comparing to exact solutions from a branch-and-bound method, or to approximate solutions from a simple heuristic. With very few exceptions, the Potts approach gives high-quality legal solutions. The computational demand scales merely as the product of the numbers of requests, nodes, and arcs.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (7): 1589–1599.
Published: 10 July 1997
Abstract
View article
PDF
A Potts feedback neural network approach for finding good solutions to resource allocation problems with a nonfixed topology is presented. As a target application, the airline crew scheduling problem is chosen. The topological complication is handled by means of a propagator defined in terms of Potts neurons. The approach is tested on artificial random problems tuned to resemble real-world conditions. Very good results are obtained for a variety of problem sizes. The computer time demand for the approach only grows like (number of flights) 3 . A realistic problem typically is solved within minutes, partly due to a prior reduction of the problem size, based on an analysis of the local arrival and departure structure at the single airports.