Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Masa-aki Sato
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (7): 1649–1681.
Published: 01 July 2001
Abstract
View article
PDF
The Bayesian framework provides a principled way of model selection. This framework estimates a probability distribution over an ensemble of models, and the prediction is done by averaging over the ensemble of models. Accordingly, the uncertainty of the models is taken into account, and complex models with more degrees of freedom are penalized. However, integration over model parameters is often intractable, and some approximation scheme is needed. Recently, a powerful approximation scheme, called the variational bayes (VB) method, has been proposed. This approach defines the free energy for a trial probability distribution, which approximates a joint posterior probability distribution over model parameters and hidden variables. The exact maximization of the free energy gives the true posterior distribution. The VB method uses factorized trial distributions. The integration over model parameters can be done analytically, and an iterative expectation-maximization-like algorithm, whose convergence is guaranteed, is derived. In this article, we derive an online version of the VB algorithm and prove its convergence by showing that it is a stochastic approximation for finding the maximum of the free energy. By combining sequential model selection procedures, the online VB method provides a fully online learning method with a model selection mechanism. In preliminary experiments using synthetic data, the online VB method was able to adapt the model structure to dynamic environments.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (2): 407–432.
Published: 01 February 2000
Abstract
View article
PDF
A normalized gaussian network (NGnet) (Moody & Darken, 1989) is a network of local linear regression units. The model softly partitions the input space by normalized gaussian functions, and each local unit linearly approximates the output within the partition. In this article, we propose a new on-line EM algorithm for the NGnet, which is derived from the batch EM algorithm (Xu, Jordan, & Hinton 1995), by introducing a discount factor. We show that the on-line EM algorithm is equivalent to the batch EM algorithm if a specific scheduling of the discount factor is employed. In addition, we show that the on-line EM algorithm can be considered as a stochastic approximation method to find the maximum likelihood estimator. A new regularization method is proposed in order to deal with a singular input distribution. In order to manage dynamic environments, where the input-output distribution of data changes over time, unit manipulation mechanisms such as unit production, unit deletion, and unit division are also introduced based on probabilistic interpretation. Experimental results show that our approach is suitable for function approximation problems in dynamic environments. We also apply our on-line EM algorithm to robot dynamics problems and compare our algorithm with the mixtures-of-experts family.